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We demonstrate quantum control and entanglement generation using a Landau-Zener beam split-
ter formed by coupling two transmon qubits to a superconducting cavity. Single passage through the
cavity-mediated qubit-qubit avoided crossing provides a direct test of the Landau-Zener transition
formula. Consecutive sweeps result in Landau-Zener-Stückelberg interference patterns, with a visi-
bility that can be sensitively tuned by adjusting the level velocity through both the non-adiabatic
and adiabatic regimes. Two-qubit state tomography indicates that a Bell state can be generated
via a single passage, with a fidelity of 78% limited by qubit relaxation.

In many quantum systems, the energy spectrum con-
sists of discrete levels that are functions of an external
parameter. A level crossing will occur if two energy
eigenstates can be tuned into degeneracy through con-
trol of such a parameter. However, if these states are
coupled via an off-diagonal Hamiltonian matrix element
of magnitude ∆, this degeneracy will be lifted result-
ing in an avoided crossing with a minimum energy sep-
aration of 2∆ [1]. The adiabatic theorem states that
an initial stationary state will be carried into the cor-
responding instantaneous eigenstate of the Hamiltonian
if the external parameter is varied through the avoided
crossing slowly on timescales set by the relevant energy
level separations [2]. However, for general sweep rates,
traversing an avoided crossing leads to a non-adiabatic
transition probability PLZ to tunnel across the gap, as
first described by Landau, Zener, Stückelberg, and Ma-
jorana [3–6]. Landau-Zener transition physics has been
applied to atomic collisions, where the external parame-
ter is interatomic distance, and to adiabatic rapid passage
in nuclear magnetic resonance, where the parameter is a
rapidly varying magnetic field [7, 8]. Avoided crossings
have recently been used as effective “beam splitters” of
quantum states in more controllable systems including
single superconducting qubits [9–13] and semiconductor
double and triple quantum dots [14, 15].

Circuit quantum electrodynamics (cQED) uses a dis-
persive cavity-mediated interaction between two super-
conducting qubits placed in the same microwave res-
onator to generate an effective qubit-qubit coupling g12 =
∆/~ [16–19]. The “quantum bus” architecture has en-
abled the demonstration of two-qubit algorithms and
three-qubit error correction [20, 21]. In this Letter, we
use Landau-Zener physics to control states in the single-
excitation subspace of two magnetic field-tunable trans-
mon qubits coupled to a superconducting resonator. Sin-
gle passage through the avoided crossing via fast mag-
netic flux sweeps provides a direct test of the asymp-
totic Landau-Zener formula [8]. Double passage results in
tunable Landau-Zener-Stückelberg interference patterns,

analogous to Mach-Zehnder interferometry [8]. These
experiments allow us to observe the full crossover from
non-adiabatic to adiabatic transitions in a single control-
lable system. Finally, single passage through the avoided
crossing is used to generate two-qubit entanglement with
a relaxation-limited fidelity of 78%, as verified by state
tomography. Such a beam splitter of two-qubit states
could potentially be of use in a quantum information pro-
cessor in which tunable qubits utilize more than one bias
point for computation.

Our cQED device, shown in Fig. 1(a), consists of two
aluminum transmon qubits coupled to a niobium su-
perconducting coplanar waveguide cavity on a sapphire
(Al2O3) substrate [17, 18, 22, 23]. All measurements are
performed in a cryogen-free dilution refrigerator with a
base temperature of ∼ 10 mK. Each qubit is coupled to
its own flux bias line, which we calibrate for both dc and
ac crosstalk. Experimentally determined parameters in-
clude a fundamental cavity mode frequency fr = 8.795
GHz, photon decay rate κ/2π ≈ 0.5 MHz (for a cav-
ity quality factor Q ≈ 17, 000), qubit-cavity couplings
(between the first transmon transition and lowest cavity
mode) g1(2)/2π = 183(185) MHz, transmon charging en-
ergies EC1(2)/h = 220(200) MHz, and transmon Joseph-
son energies Emax

J1(2)/h = 140(150) GHz.

The cavity-mediated qubit-qubit coupling is first
probed through dispersive microwave spectroscopy,
where transmission through the cavity is measured while
a second microwave tone is swept across the transmon
transition frequencies [17, 24]. Transitions in the trans-
mon qubits are detected as a dispersive shift in the cav-
ity resonance, allowing qubit spectroscopy at frequencies
much different from fr. Figure 1(b) reveals a coupling
strength of 2g12/2π = 34.8 MHz when the qubits are
tuned into resonance at 13.9 GHz. A simple entangling
operation is performed by applying a π-pulse to one of
the qubits at point I and then pulsing via the flux bias
lines to the avoided crossing at point II for a variable
amount of time τP. The frequency of the resulting coher-
ent oscillations, shown in Fig. 1(c), is consistent with the
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Figure 1. (color online) (a) Optical micrograph of a four-port
cQED device comprised of a λ/2 superconducting resonator
coupled to two transmon qubits, each consisting of two su-
perconducting islands coupled via a SQUID loop and finger
capacitors (insets) [22]. Qubit Q1 (Q2) is controlled with flux
bias voltage V1 (V2) and microwave tone f1 (f2). Qubit read-
out is performed by driving the resonator with a microwave
tone fr and measuring the transmitted homodyne voltage
VH. (b) Low-power spectroscopy reveals a cavity-mediated
avoided crossing between states |10〉 and |01〉. Φ2 denotes the
applied magnetic flux through the split junction loop of Q2,
and Φ0 is the magnetic flux quantum. Qubit state readout
is performed at point I. (c) A time-resolved cavity-mediated
interaction is achieved by pulsing near the avoided crossing
(point II) for a time τp. The blue (red) points show VH as a
function of τp when the system is initialized in |10〉 (|01〉) at
point I. Solid lines are guides to the eye.

energy splitting obtained from spectroscopy. Qubit read-
out is achieved using the Jaynes-Cummings nonlinearity,
through which the strongly driven bare-cavity transmis-
sion is highly sensitive to the state of each qubit [25].

To probe the Landau-Zener transition dynamics asso-
ciated with the avoided crossing, we perform a single-
passage experiment in which the state |10〉 is initialized
at point III and then ramped over a pulse risetime τR to
point I, where the resulting qubit populations are mea-
sured. A schematic illustration of the process is shown in

Fig. 2(a) and the specific pulse sequence is depicted in the
inset of Fig. 2(b). The Landau-Zener formula predicts

a non-adiabatic transition probability PLZ = e−
2π∆2

~ν ,
where ν is the “level velocity” of the uncoupled energies,
ν ≡ |d(E1 − E2)/dt| [8]. We plot the resulting popula-
tions as a function of 1/ν ∝ τR in Fig. 2(b). For large
level velocities, Q1 remains in its initial state and Q2

remains in the ground state. As ν decreases, PLZ de-
creases from 1, and population transfer occurs. We note
that in the absence of relaxation, the population of Q2

(red points) would continue to increase asymptotically
with τR to a population of 1, corresponding to a com-
pletely adiabatic process. Selecting τR ≈ 40 ns (1/ν ≈ 13
ns/µeV) gives a 50-50 beam splitter. Deviations from
PLZ = 1/2 at this point are due to qubit relaxation dur-
ing the experiment. Fitting an exponential decay to the
Q1 curve (blue points) according to the Landau-Zener
formula (after subtracting out the independently mea-
sured T1,1 = 120 ns Q1 relaxation time) yields a best fit
value 2g12/2π = 34.0 MHz, within 1 MHz of the value
extracted from spectroscopy. Our experimental results
agree well with numerical simulations [see solid lines in
Fig. 2(b)] of a master equation in the Lindblad form that
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Figure 2. (color online) (a) Fast flux bias ramps are used to
sweep the system through the cavity-mediated avoided cross-
ing, with dynamics governed by the Landau-Zener transition
formula. Passage through the avoided crossing is equivalent
to a beam splitter. If the system is initialized in state |10〉
and then swept through the avoided crossing, the probabil-
ity to remain in the diabatic state |10〉 is given by PLZ. (b)
The cavity-mediated beam splitter is characterized by sweep-
ing through the avoided crossing from point III to point I for
a range of ramp times τR ∝ 1/ν. Q1 (Q2) populations are
plotted as a function of 1/ν in blue (red).



3

0 20 40 60

0 25 50

Experiment

 

τP  (ns)

 

 

0 20 40 60

10

14

18

0.0 0.4 0.8

Experiment

τP  (ns)
0 20 40 60

Simulation Simulation

0.0

0.5

1.0

τ
P

 (ns)

P
|1

0〉

ν  ≈    1 µeV/ns
ν  ≈   0.08 µeV/ns

1/ν (ns/µeV)

 

(Non-adiabatic) InterfereAccumulate
Phase

PLZ ≈ 1 PLZ ≈ 0.5
Ei

ge
ne

ne
rg

ie
s

Time

    
(Balanced 50-50) InterfereAccumulate

Phase

PLZ PLZ

PLZ

1-PLZ

1-PLZ

1-PLZ 1-PLZ

1-PLZ

1-PLZ

PLZ

PLZ

PLZ

  ≈ 1.5 ns

φφ

Time

τR

τ
P

τR  ≈ 18 ns τR

τ
P

II

I

P|10〉

|∆
Φ

2
|
(m

Φ
0)

(a)

(b)

(c)

(d)

0

0.2

0.4

0.6

0.8

1.0

V

 
DBS Equation
DBS Eqn. + Relaxation

τR

τR  ≈ 18 nsτR  ≈ 1.5 ns

    Beam Split     Beam Split

Figure 3. (color online) (a) A sweep back and forth across the avoided crossing is equivalent to a Mach-Zehnder interferometer,
with level velocity-dependent transmission ratios that are controlled by the ramp time τR of the flux bias pulse. The red and
blue curves depict how the eigenenergies evolve during the experiment. The labels I and II on the left refer to the labeled flux
bias points in Fig. 1(b). (b) P|10〉 plotted as a function of flux bias pulse width τP and flux bias pulse detuning ∆Φ2 for ramp
times τR ≈ 1.5 ns (left) and τR = 18 ns (right). A pulse to the avoided crossing (point II) corresponds to |∆Φ2| ≈ 12 mΦ0.
Insets: Simulated Landau-Zener-Stückelberg interference patterns. (c) P|10〉 as a function of τP for τR ≈ 1.5 ns and τR = 18 ns,
as extracted from the data sets in panel (b) (dashed lines). (d) Oscillation visibility V plotted as a function of 1/ν. The green
solid line is the result of the double beam splitter (DBS) formula (3) after plugging in previously extracted parameters and
neglecting relaxation. The solid red line is the result of multiplying the green curve by an exponential decay (with previously
measured time constant T1,1 ≈ T1,2) with respect to 1/ν ∝ τR, with offset and scaling based on measured ramp and buffer
times (see Supplemental Material), and agrees closely with a curve obtained using the numerical master equation simulation.

accounts for relaxation and dephasing [26, 27]

ρ̇ =
1

i~
[H, ρ] +

∑
k,Qi

(Lk,QiρL
†
k,Qi
− 1

2
{ρ, L†k,QiLk,Qi}).

(1)
The Lindblad operator L1,Q1

=
√

Γ1,Q1
σ− ⊗ I describes

relaxation of Q1 to its ground state, while L2,Q1
=√

Γ2,Q1
σz ⊗ I describes pure dephasing of Q1, with the

analogous operators defined for Q2. The weights of other
potential Lindblad operators relevant to the dynamics
were assumed to be small and were not included. The
fitted rates Γ are consistent with coherence times ex-
tracted from standard single-qubit Rabi and Ramsey ex-
periments (T1,1(2) ≈ 120(130) ns, T ∗2,1(2) ≈ 150(180) ns).

The Landau-Zener formula describes transition proba-
bilities, but not the more fundamental transition ampli-
tudes that give rise to many interesting quantum interfer-
ence phenomena. Phase is an important relation between
two interacting states, in particular states that “recom-
bine” after a beam splitter event. If the avoided cross-
ing is doubly traversed (across and back), the relative
phase accumulated between the two consecutive cross-

ings will lead to Stückelburg oscillations [5]. In conven-
tional Landau-Zener problems such as atomic collisions,
phase accumulation occurs so rapidly that interference is
washed out by even a small amount of decoherence [5].
However, in artificial atoms this phase can be observed
and precisely tuned [10, 11, 13, 14].

In Fig. 3 we observe Stückelburg oscillations by per-
forming a “double beam splitter” experiment that is anal-
ogous to Mach-Zehnder interferometry. We are able to
sensitively tune the visibility of the resulting Stückelberg
oscillations, in agreement with theoretical predictions.
Schematics of a double passage experiment in the non-
adiabatic (PLZ ≈ 1) and balanced 50-50 beam splitter
(PLZ ≈ 0.5) regimes are shown in the left and right pan-
els of Fig. 3(a) respectively. State |10〉 is prepared near
point I and linear flux bias ramps are applied to sweep
the system through the avoided crossing (point II) and
back, with symmetric ramp time τR and pulse duration
τP. The resulting experimental data are shown in Fig.
3(b), again with the left panel having PLZ ≈ 1 (τR ≈ 1.5
ns, leading to ν ≈ 1 µeV/ns and PLZ ≈ 0.95 at the dashed
line) and right panel having PLZ ≈ 0.5 (τR = 18 ns, lead-
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ing to ν ≈ 0.08 µeV/ns and PLZ ≈ 0.56 at the dashed
line). The resulting interference patterns agree well with
the numerical master equation simulation (1), as shown
in the insets of Fig. 3(b). Horizontal cuts through these
data are shown in Fig. 3(c), indicating that the visibility
of the oscillations is a sensitive function of the level ve-
locity. Note that these oscillations occur in their entirety
below P|10〉 = 1 because of qubit relaxation during ramp
and buffer times.

The level velocity-dependence of the oscillation vis-
ibility can be understood by examining the successive
transition amplitudes during the double passage experi-
ment. Neglecting relaxation and dephasing, each passage
through the beam splitter performs an effective unitary
operation on the incoming state according to the transfer
matrix [11, 28, 29]

U =

(√
1− PLZe

iφ̃S i
√
PLZ

i
√
PLZ

√
1− PLZe

−iφ̃S

)
, (2)

where φ̃S = −π/2 + φS, φS = π/4 + Arg [Γ(1− iδ)] +
δ(ln δ− 1) is the Stokes phase, and Γ is the gamma func-
tion. The Stokes phase is a function of the adiabaticity
parameter δ = ~g212/ν [11]. Inserting a free evolution pe-
riod between the two beam splitter operations results in
a return probability

P|10〉 = 1− 2PLZ(1− PLZ)
[
1 + cos(φ− 2φ̃S)

]
, (3)

where φ is the dynamical phase accumulated on the far
side of the avoided crossing. Therefore, in the absence
of decoherence, the visibility of the Landau-Zener-Stück-
elberg interference fringes is V = 4PLZ(1 − PLZ). We
explicitly test this dependence by measuring coherent os-
cillations as a function of τP at a fixed |∆Φ2| ≈ 16 mΦ0

for different beam splitter ramp times τR. The resulting
oscillation visibilities, defined as the initial amplitudes of
fits to the decaying oscillations (see Supplemental Mate-
rial), are plotted as a function of 1/ν in Fig. 3(d). Our
results agree well with theory when relaxation is taken
into account and yield a maximum oscillation visibility
when 1/ν ≈ 12 ns/µeV, consistent with the single-pass
beam splitter calibration in Fig. 2(b).

Finally, we demonstrate entanglement generation
through a single passage in the 50-50 beam splitter limit.
After initializing the system in state |10〉 at point III,
we sweep across the avoided crossing with a ramp rate
corresponding to PLZ = 0.5. This time, a set of tomog-
raphy pre-rotations Uk ∈ SU(2) ⊗ SU(2) is performed
at point I directly before measurement. Figure 4(a) il-
lustrates the ideal process in the absence of relaxation
and dephasing. The initial state |ψin〉 = |10〉 is inci-
dent on the beam splitter, yielding an entangled state
|ψout〉 = 1/

√
2(|10〉+|01〉). The results from state to-

mography are shown in Fig. 4(b) and agree well with the
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Figure 4. (color online) (a) In the 50-50 beam split-
ter limit, a single pass through the avoided crossing con-
verts the input state |ψin〉 = |10〉 to the Bell state |ψout〉 =
1/
√

2 (|10〉+ |01〉) = |ψB〉. (b) An entangled state is gener-
ated by preparing the system in state |10〉 and then sweep-
ing through the avoided crossing with a ramp time corre-
sponding to 1/ν = 13 ns/µeV and PLZ = 0.5. We per-
form state tomography to extract the density matrix of the
two-qubit system via maximum-likelihood estimation [20],
assuming a joint measurement operator of the form M =
βIIII + βZIZI + βIZIZ + βZZZZ [31]. The density matrix
shown is after an azimuthal Z rotation on Q2 chosen to max-
imize the off-diagonal terms in Re [ρ]. Imaginary parts (not
shown) are all small compared to the real components (less
than 0.04). See Supplemental Material for further experimen-
tal details.

master equation simulation (1) that takes into account
relaxation and dephasing (red dashed lines). We obtain
a state fidelity with respect to the target Bell state of
F =

√
〈ψB|ρ|ψB〉 = 78% and entanglement of formation

Ef = 63% [30], both limited by relaxation.

In conclusion, we have utilized cavity-mediated
Landau-Zener physics to achieve coherent control of a
two-qubit transmon system. We have verified the general
Landau-Zener formula and the dependence of double-
passage Stückelberg oscillations on the level velocity.
A simple entanglement generation protocol is demon-
strated, where a single passage through the avoided cross-
ing in the 50-50 beam splitter limit yields a Bell state
with F = 78% limited by relaxation. With longer qubit
lifetimes (over 1 µs is common in state of the art pla-
nar cQED devices [20, 21]), performance of the “beam
splitter” entanglement method should be comparable to
that of standard methods of entanglement generation in
cQED. For example, with relaxation and dephasing times
of 1 µs, our numerical simulations predict that F ≈ 95%
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is achievable using linear flux ramps across the same
avoided crossing. The combination of single-qubit rota-
tions and Landau-Zener two-qubit interactions may then
be used to implement more complicated quantum control
of systems with tunable cavity-coupled qubits.
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