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Samples of ultracold 174Yb+ ions, confined in a linear radio-frequency Paul trap, are heated
via micromotion interruption, while their temperature, density, and therefore structural phase are
monitored and simulated. The observed time evolution of the ion temperature is compared to a
theoretical model for ion-ion heating allowing a direct measurement of the Coulomb logarithm in
a linear Paul trap. This result permits a simple, yet accurate, analytical description of ion cloud
thermodynamic properties, e.g. density, temperature, and structural phase, as well as suggests
limits to and improvements for on-going trapped-ion quantum information efforts.

PACS numbers:

Binary collisions in an ensemble of charged particles are fundamental throughout physics. As such, modeling their
behavior plays an important role in applications ranging from thermonuclear fusion [1], to quantum computation [2].
Despite their importance and the large amount of work towards understanding their effects, there is still considerable
ambiguity in how to best model these collisions. Since Landau’s early work [3], the most straightforward approach
handles the divergence associated with collisions of charged particles by introducing both a short-range and long-
range cut-off for the 1/r interaction potential. The long-range cut-off is typically associated with the Debye screening
length, λD =

√

ǫokBT/ρe2, where ρ and T are density and temperature respectively. The short-range cut-off is
associated with the Landau length, RC = e2/(4πǫokBT ), which is the distance of closest approach. Taken together,
the integration bounds give rise to the so-called Coulomb logarithm in its simplest form, lnΛ = ln (CλD/RC), where
C is a constant coefficient.
Over the last 75 years, there have been many attempts to calculate an accurate form of lnΛ, ranging from straight-

forward estimations of the coefficient C [4] to sophisticated analytical treatments [5] with reasonable consensus that
C ≈ 0.765 [6]. These results give satisfactory agreement with data for weakly coupled systems, g = RC/λD ≪ 1,
but clearly fail to describe strongly-coupled systems, g ≫ 1, where the collision rate saturates. In this regime, more
sophisticated treatments [7], which do not require a short-range cut-off, have recommended several alternative forms
for lnΛ. And recently, a new approach, motivated by the need to model thermonuclear ignition, used molecular
dynamics simulations to suggest lnΛ ∼ ln (1 + 0.7/g) [8, 9] for g < 10.
Given the importance of the Coulomb logarithm, there have also been attempts at a direct measurement of its

dependence on the strong-coupling parameter g. These experiment, which have either been confined to the weak-
coupling limit[10] or were inconclusive [11], were typically performed in dense, high-energy plasmas produced via laser
ablation. In this work, we use an alternate route to realize a strongly-coupled ion system and measure lnΛ: laser-
cooled 174Yb+ ions confined in a linear Paul trap. Here, the confining trap potential provides a smoothly varying,
neutralizing background for the positively charged ions, resulting in a system described as a one-component plasma.
Despite the low density, the low temperature accessible through laser cooling make it possible to realize systems with
g ≫ 1. Further, by laser cooling the sample to a large g and then allowing the ions to heat through micromotion
interruption, we are able to measure the evolution of both the temperature and structural phase of the trapped ion
cloud over a large range in g. From these measurements, we are then able to determine lnΛ for 10−7 ≤ g ≤ 10−2.
Using a molecular dynamics simulation, we confirm this experimental determination and extend it to 10−7 ≤ g ≤ 103.
As the values of lnΛ for large g are known to be process dependent [12], this result must be carefully interpreted
before it can be applied to other systems. Nonetheless, it offers a complete description of lnΛ for Paul traps, and
thus allows a simple analytical description of trapped ion thermodynamics.
In the remainder of this manuscript, we explain the phenomenon of ion heating by micromotion interruption, detail

the method by which lnΛ is extracted, and describe the experimental system. We present experimental and molecular
dynamics results and a recommended expression for lnΛ in linear Paul traps. We conclude with a discussion of the
implications of this work for trapped-ion quantum information efforts.
In a linear Paul trap, a singly charged ion experiences both a time-dependent force from the confining electric

potential of the trap and Coulomb repulsion from the other ions, resulting in trajectories given by:
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with the trap potential given as:
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where ro is the field radius, zo is the distance from trap center to the end cap used for axial confinement, Vrf and
Vec are the radio-frequency (rf) and end cap voltages, respectively, Ω is the frequency of the rf voltage, and α is a
geometric factor less than unity. Due to the infinite range of the Coulomb interaction, Eq. (1) represents a complicated
many-body problem and has no closed-form solution. Therefore, two alternative approaches are usually employed to
treat this system.
First, rigorous molecular dynamics (MD) simulations have been performed to study the structure of ion clouds [13]

and rf heating rates [14], and for comparison with experimental ion fluorescence images [15]. Despite their successes,
these simulations offer little physical intuition, making it difficult to optimize a given system.
The second approach to modeling large ion systems in a Paul trap has been through analytical techniques [16–19].

Of these, the simplest and most intuitive describes the trapped ion trajectories by the well-known Mathieu solutions
and includes the effect of the Coulomb interaction as hard-sphere collisions between ions to calculate, among other
things, the evolution of the trapped ion kinetic energy [18, 19]. In this limit, the collision-induced heating rate is
given as, Ẇ = γ∆W , where γ is the collision rate and ∆W is the kinetic energy change per collision [19], which is
found by enforcing conservation of momentum and energy for the collision and requiring that the new ion trajectory
corresponds to a Mathieu solution. In contrast to static traps, ∆W does not average to zero over time, or over the
ensemble, in a rf Paul trap. In fact, as shown in Ref. [19] upon averaging ∆W is always positive, leading to the
so-called micromotion-interruption heating phenomenon. Though this heating has been explained in different ways
[16, 20, 21], it arises from the simple fact that when ions undergo collisions their trajectories are not given by the
stable Mathieu trajectories and as a result the rf trapping field can do net work on them.
To link temperature with W , we introduce Tsec and Ttot to be proportional to the random thermal energy (secular

motion) of the ions and the total kinetic energy (secular motion plus micromotion), respectively [21]:

CTtot = W CTsec = Wsec = η(W −Wex) (3)

where C = 3
2NkB and η is the ratio of secular energy to total energy – η ≈ 3

5 for low Mathieu q parameter as a
consequence of equi-partition of energy between secular motion and micromotion [18]. Wex accounts for the excess
micromotion energy [22] due to displacement of the ion from the node of the oscillating electric field, as a result of
either the location of the ion in the crystal or stray, uncompensated, dc electric fields. Typically, Tex = Wex/C is a
few Kelvin for an ion crystal composed of N ∼ 103 ions [15, 22].
Using the Chandrasekhar-Spitzer plasma self-collision rate [4] (also see Supplementary Material), the rate of change

of the secular temperature of the ion cloud is given as:

Ṫsec =
e4ρi(Tsec) lnΛ

2πǫ20
√
m(3kBTsec)3/2

ǫ(Tsec + ηTex) (4)

where ρi(Tsec) is the ion density [19] and ǫ = ∆W/W is the average fractional increase of the ion energy per collision.
By averaging over the rf-phase at which the collision takes place, Refs. [18, 19] have calculated ǫ in terms of the
Mathieu stability parameters a and q (see Supplementary Material). Through numerical integration of their result,
we have found ǫ can be simplified to ǫ ≈ 2

3 (1 + 2q2.24) with a relative error < 0.4% for q ≤ 0.4, a = 0. Thus, by laser
cooling a sample of trapped ions to a low initial temperature, extinguishing the laser cooling, and monitoring the ion
temperature evolution, we are able to measure lnΛ as a function of g.
The experimental apparatus used in this work consists of a sample of 174Yb+ ions, loaded via laser ablation, into

a linear rf Paul trap with ro = 1.2 cm, zo = 1.075 cm, α = 0.13, Ω = 2π × 300 kHz, Vrf = 155 V and Vec = 5 V.
A strongly coupled ion ensemble (N = 102−3) is realized by laser-cooling the Yb+ ions, along the trap axis, with a
369 nm cooling laser (detuned from resonance by δ = −30 MHz) and 935 nm repump laser (δ = 0 MHz) to a starting
secular temperature, measured from the Doppler broadened fluorescence profile, ranging from Doppler limited, TD ∼
1 mK to 100 mK, depending on crystal size, resulting in a one-component plasma with g = 102 ∼ 103.
Once the strongly-coupled plasma is established in the trap, the cooling laser is extinguished and the ions evolve

in the trap and heat through micromotion interruption. After a variable time delay, the cooling and repump lasers
are reapplied and the fluorescence level of the ion cloud immediately recorded. If the ion temperature has increased
during the time when the lasers were extinguished, this fluorescence level will be different than the steady-state value
reached for the initially cold plasma, see Fig. 1(a). By recording the ratio of fluorescence before and after heating, the
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FIG. 1: (a) Laser fluorescence profile for a sample of ions at the TD (solid) and at ∼90 K (dashed). The arrow denotes the
change in fluorescence at a fixed detuning of δ = -30 MHz. Also shown at the corner is a typical fluorescence image of ion
cloud. (b) The observed (dots) and simulated (line) fluorescence ratio for δ = -30 MHz vs. heating time. The inset is a typical
fluorescence image of an ion cloud. (c) The extracted (dots) and simulated Tsec (line) and Ttot vs. heating time.

temperature of the ions can be estimated as a function of heating time in a manner similar to Ref. [23], as shown in
Fig. 1(b)-(c) for a sample of ions with N = 280, with the uncertainties of estimation indicated by the representative
error bars in Fig 1 (for estimation of uncertainty, see Supplementary Material). Typically, the observed fluorescence
ratio decreases with increasing temperature since both the fluorescence profile is further Doppler broadened and the
higher energy ion trajectories have less overlap with the laser beam inducing the fluorescence, see Fig. 1(a)-(b).
As seen in Figs. 1(b)-(c), the fluorescence level, and thus the temperature, is relatively unchanged until 10-100 ms

after the laser cooing is extinguished, when a sharp increase in temperature occurs, followed by a region of slower
heating. As detailed below, the relatively small heating rate observed at early times is a consequence of the suppression
of ion-ion collisions, i.e. a small lnΛ, for a strongly-correlated plasma, while the sudden jump in temperature coincides
with the phase transition from the liquid to gas phase. At the liquid-gas boundary, the ion density is still relatively
high, but the ion motion becomes less correlated, i.e. increased lnΛ, leading to a larger heating rate. As the ions
move into the gas phase, the motion becomes even more uncorrelated, leading to a further increase in lnΛ, however,
the density, and thus the collision rate drops, leading to a reduced heating rate. Also shown in Figs. 1(b)-(c) are the
results of a molecular dynamics simulation, which initializes the ions at the experimentally realized temperature and
then integrates Eq. (1) numerically using a leapfrog algorithm [24] implemented in ProtoMol software [25]. As the ions
heat through micromotion interruption, their fluorescence level is calculated from the known laser intensity profiles
and a rate-equation model, which includes the variation of laser intensity and Doppler shift for each ion position and
velocity, respectively. Given experimental imperfections, such as stray fields, machining errors, laser amplitude and
frequency noise, etc., that are not included in the simulation, the agreement between the simulated and measured
fluorescence ratios (Fig. 1(b)) is satisfactory. In what follows, we use these results to extract the ion-ion heating rate
and ultimately lnΛ.
Using experimental data like that shown in Fig. 1 for ion clouds with N between 300 and 3000, and modeling the

density under the assumption of harmonic potential and thermal equilibrium as

ρi(Tsec) =

{

ρmax : Tsec ≤ Tp

ρmax

(

Tp

Tsec

)3/2

: Tsec ≥ Tp

(5)

where ρmax = 4ǫ0V
2
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2
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, and ω is the geometric mean of the three secular frequencies,

Eq. 4 is inverted to find lnΛ and the results are plotted in Fig. 2. As the heating rate is the time derivative of Tsec,
the coarse granularity of the experimental data in time makes it difficult to calculate reliable values of lnΛ at short
time scales. Therefore, we also determine the heating rate and ln Λ from molecular dynamics simulations. For the
simulated data, the heating rate is found by taking the numerical time derivative of the ion temperature, defined by



4

FIG. 2: The experimental (black dots) and molecular dynamics (white dots) determinations of ln Λ versus g. Despite large
variation in trap parameters (see text) the observed values fall along the same curve, indicating a ‘universal’ form for ln Λ. The
red line represents the best fit described in the text, while the black and dashed line are the results of Ref. [8] and ln(0.765/g)
[6], respectively. Shown at the right of the figure are the velocity distribution functions, extracted from simulation, for selected
g-values.

3
2NkBTtot =

m
2

∑N
i=1 ~vi(t)

2 and 3
2NkBTsec = m

2

∑N
i=1 ~vsec,i(t)

2 where ~vi and ~vsec,i are the total and secular velocity
of ith ion and the overline denotes averaging over several secular motion periods. The resulting values for lnΛ are
consistent with those extracted from experimental data, as shown in Fig. 2, but are expected to be of higher accuracy.
Using this technique, molecular dynamics simulations were performed, like those shown in Fig. 1, for a range of ion
numbers N = {50, 100, 500, 900} and ion-cloud radial-to-axial ratios [26] of R/z = {0.25, 1, 4}) to determine if the
parameterization of Eq. 4 leads to a universal form for lnΛ in Paul traps.
The values of lnΛ extracted from the simulation are plotted versus g in Fig. 2 alongside the Landau-Spitzer result

[6] and the result of Ref. [8]. Also shown, as the top x-axis in this figure, is the corresponding plasma coupling
parameter Γ = e2/ (4πǫoawskBTsec), which, given the Wigner-Seitz radius aws = 3

√

3/(4πρi) and Tsec, characterizes
the structural phase of the ion cloud as denoted by the three regions of the graph [27]. Clearly, despite the large
changes in ion number and ion-cloud geometry, the dependence of lnΛ on g appears universal and can be parametrized
by the piece-wise fit:

lnΛ =

{

fI(g) =
ln(1+0.7/g)
1+125

√
g : g < 1

fII(g) =
fI(g=1)

g2 : g ≥ 1
(6)

where the form of fI(g) has been inspired by Ref. [8]. Interestingly, the observed change in dependence of lnΛ
on g occurs near the gas-to-liquid phase boundary, which, since λD/aws = 1/ 3

√
3g, also coincides with the regime

where the Debye length becomes smaller than the average inter-particle spacing. Therefore, assuming Debye theory
is approximately valid for g > 1/3, it is reasonable to expect the ion-ion cross-section is proportional to λ2

D and thus
lnΛ ∝ λ2

DT 2 ∝ g−2 in agreement with the fit.
For reference, shown at the right of Fig. 2 are the secular velocity distributions of the ions for three selected g

values. In this figure the points are a histogram of the simulated secular velocity distribution, while the solid curve is
the Maxwell-Boltzmann (MB) velocity distribution expected for the calculated temperature. Clearly, the simulation
results for the gas and liquid phases are consistent with the MB distribution, confirming the appropriateness of the
Chandrasekhar-Spitzer rate in deriving Eq. 4. For the solid phase, the velocity distribution exhibits a significant
power-law tail, violating the assumptions of Eq. 4 and preventing an accurate determination of lnΛ in this phase.
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FIG. 3: Comparison of experimental temperature, density and heating rate (dots) for two ion clouds (N = 280 (blue) and
N = 2800 (red)) as a function of time to the result predicted by Eq. 4 with ln Λ given by Eq. 6 (line).

Several analytical results can be derived using Eq. 6 that provide insight into the plasma dynamics and have
important consequences for quantum computation with trapped ions. First, for g ≪ 1, lnΛ can be approximated as
a constant (as is typical for low density plasma [28]) and Eq. 4 integrated, yielding Tsec ∝ t1/3. In this regime, the
ion temperature grows slowly until it is eventually balanced by evaporative loss from the trap or sympathetic cooling
from residual neutral background gas. Second, assuming that Tex ≫ Tsec in the initial ion crystal, Eq. 4 can be

directly integrated for g > 1 yielding Tsec = [c(tm − t)]−2, where c = fI(1)2πǫ0k
3/2
B ǫηTex/(

√
me2) and the time of

the dramatic rise in temperature as the ions move into the gas phase is tm = T
−1/2
sec (t = 0)/c, which in the case of

our experiment we have found it is accurate to within 10 ms. Interestingly, in quantum computation with strings of
trapped ions the computational gate operations occur with the laser cooling extinguished. Therefore, tm represents
the upper limit for the time to implement a computational algorithm since, once the ion string melts, the quantum
information is lost and the register must be reinitialized. For the parameters of e.g. Ref. [29] with 14 ions and Tex ≈ 1
mK, we find this fundamental limit to be ∼ 103 s. If this system is scaled to a larger number of ions, as necessary
for many practical quantum computation applications, tm will be significantly reduced if excess micromotion is not
controlled and may limit the number of possible gate operations. Likewise, recent proposed experiments to use kinked
ion chains to study the Kibble-Zurek mechanism [30] and the coherence of discrete solitons [31] will be fundamentally
limited to timescales less than 1 ∼ 10 s. In addition to providing the upper limit for a single computation/simulation,
the expression for tm can be used to guide future efforts. For example, linear string geometries of heavy ions at low
Mathieu q parameter should exhibit the longest lifetimes.
Finally, to demonstrate the utility of the expression for lnΛ, Fig. 3 compares experimental data for two ion clouds

of different size (N = 280 and 2800), taken in the same manner as the data of Fig. 1, with the temperature and density
predicted by the integration of Eq. 4 using Eq. 6. In addition to providing a simple means to accurately calculate
the thermodynamic properties of a system of trapped ions, these expressions explain several well-known experimental
observations. For example, the smaller ion-ion heating rate (Fig. 3(c)) in the solid phase is due to ion-ion correlation
as quantified through lnΛ.
In conclusion, we have measured the heating rate of ions trapped in a linear rf Paul trap due to micromotion

interruption. These data, and detailed molecular dynamics simulations, have been used to determine the value of
lnΛ over a range of 10−7 ≤ g ≤ 103. Though most determinations of lnΛ are process dependent [12], we expect our
results to be comparable to lnΛ in other one-component plasmas for g ≪ 1, as the Mathieu trajectories accurately
describe the ion motion in this regime. This expectation is supported by the fact that our result converges to the
traditional Landau-Spitzer result in this regime. However, as g grows the Mathieu solutions provide a less accurate
description of the ion trajectories, leading to a change in e.g. ǫ. If future theoretical work accounts for these effects,
then our measurement might be reinterpreted to give a model independent determination of lnΛ, which we expect to
be similar to the form suggested by Dimonte and Daligault [8]. Nonetheless, in its current form our result permits
a simple, yet accurate, analytical description of ion cloud temperature, density, and structural phase transitions in a
linear Paul trap. Thus, it should be immediately useful to a number of experimental efforts, including the growth of
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large ion crystals [32], sympathetic cooling of atomic or molecular ions [33–35], and trapped-ion quantum information.
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