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Floquet theory is a powerful tool in the analysis of many physical phenomena, and extended to
spatial coordinates provides the basis for Bloch’s theorem. However, in its original formulation it is
limited to linear systems with periodic coefficients. Here, we extend the theory by proving a theorem
for the general class of systems including linear operators commuting with the period-shift operator.
The present theorem greatly expands the range of applicability of Floquet theory to a multitude of
phenomena that were previously inaccessible with this type of analysis, such as dynamical systems
with memory. As an important extension, we also prove Bloch’s theorem for nonlocal potentials.
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Floquet theory is a century-old theory that allows an
easy analysis of the solutions of linear differential equa-
tions that have periodic coefficients [1, 2]. These types of
equations are very common in several areas of science and
technology, and as such the applications of Floquet the-
ory range from quantum [3, 4] to classical [5, 6] physics,
chemistry [7], electronics [8–10], dynamical systems [11]
and many more. However, its original formulation is lim-
ited to linear systems with periodic coefficients. Conse-
quently, it is a powerful tool to study nonlinear perturba-
tions, noise, and stability of systems depending instanta-
neously on time, and admitting periodic steady states.

With reference to condensed matter systems, the clas-
sical Bloch theorem [12] can be derived as a simple corol-
lary of Floquet theorem applied to space-dependent pe-
riodic potentials. Bloch states play a fundamental role
in defining the concepts of allowed and forbidden energy
bands in crystalline solids under the form of the crystal
dispersion relation [13]. However, also in this case the
usual Bloch theorem is applied to potentials depending
locally on position.

These limitations leave out many important phenom-
ena that cannot be simply described using these types
of equations. This is the case, for example, of all dy-
namical systems whose state depends on their past dy-
namics. These systems are the norm rather than the ex-
ception in natural phenomena [14] and their applications
span a wide range of problems (see, e.g., [15] for recent
examples). Turning to condensed matter physics, non-
local potentials again naturally arise whenever the many
body quantum problem is simplified by tracing out sev-
eral atomic or electronic degrees of freedom – e.g., those
associated with the “core” electrons. [13, 16]. It would
be thus of great value to extend Floquet theory to such
a general class of physical systems.

In this letter, we state and prove a generalization of
Floquet theorem that applies to systems with memory.
As a corollary of such a theorem, we prove Bloch theorem
for 3D crystals where a non-local potential energy profile

is present, thus showing that the fundamental tool we
provide is useful to probe the properties of a wide range
of physical systems.
Introductory remarks. Let us first consider a gen-

eral independent variable σ, that can represent either
the time t or a scalar spatial variable x, since the re-
sult we derive can be applied both to time- and (one-
dimensional) space-dependent equations. The standard
Floquet theorem applies to linear homogeneous systems
of the form dz0/dσ = A(σ)z0(σ) where z0 : R → R

n

and A(σ) = A(σ + Σ) is a Σ-periodic n × n matrix
[1, 2]. The general solution of this system is charac-
terized by the n × n state transition matrix X(σ, s)
(s ≤ σ ≤ s + Σ) since z0(σ) = X(σ, s)c where c is a
constant vector. According to Floquet theorem, we have
X(σ, s) = M(σ, s) exp[F(σ − s)] where M is n × n and
Σ periodic with respect to both variables, and F (of size
n× n) is a constant matrix.
Let us now discuss the general linear homogeneous sys-

tem

dz0
dσ

= LT {z0, σ} (1)

where LT is a linear operator. There have been some
previous attempts to generalize Floquet theory to sys-
tems with memory or non-local effects. The most im-
portant one is certainly the work of Hale and Verduyn
Lunel [17]. They have derived a generalization of Flo-
quet theory for linear equations of the type (1) under an
important restriction on LT : that it is Σ-periodic, i.e.,
LT {z, σ+Σ} = LT {z, σ} for any σ and any vector func-
tion z(σ). However, this set of linear operators does not
cover the entire class of systems with memory/non-local
effects. Indeed, in many applications the periodicity of
the linear operator is guaranteed only if also z(σ) is Σ-
periodic. Notice that delay systems, studied in [18], are
a particular case of (1).
We then demonstrate a theorem that extends Floquet

theory to a much larger class of linear operators LT . The
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main assumption is that a positive real Σ exists such that
LT commutes with the translation operator T , defined as
the linear operator T {v(σ)} = v(σ + Σ). Furthermore,
we assume that T acts on functions z0 defined at least on
the interval [−r + s, s+Σ] where s is the initial σ value
for (1) and r is a real constant.
Denoting as L(T ) the set of all the linear operators LT

that commute with T , a trivial verification of the defini-
tion conditions shows that L(T ) is an algebra generated
by T on the topological vector space H, made of func-
tions v(t) : [−r + s, s + Σ] → R

n. Clearly, Σ-periodic
operators are members of this algebra.
After this brief but necessary introduction we can then

formulate the main result of this contribution in the form
of the following theorem:

Theorem (Generalized Floquet theorem). Let us con-
sider the homogeneous system (1) with LT ∈ L(T ),
whose space of solutions is spanned by the state tran-
sition matrix X(σ; s) (for s ≤ σ ≤ s + Σ). The state
transition matrix has then size n × p with p ≤ +∞,
and can be written as X(σ; s) = M(σ; s) exp[F(σ − s)],
where M(σ; s) ∈ R

n×p is Σ-periodic in both variables
[i.e., M(σ+Σ; s) = M(σ; s) and M(σ; s+Σ) = M(σ; s)]
and F ∈ R

p×p is a constant matrix.

Proof. The first part of the proof is devoted to the
definition of the size of X(σ; s). Let us consider

L”T {·} =
d

dσ
{·} − LT {·, σ} . (2)

L”T is a linear operator acting on elements z0 ∈ H, the
Hilbert space spanned by the functions z0 : [−r + s, s +
Σ] → R

n. Since the functions z0 are defined over the
finite interval [−r+ s, s+Σ], H has an infinite countable
dimension and according to [19], ker {L”T } is a countable
Hilbert space of dimension p ≤ +∞. As a consequence
X(σ; s) ∈ R

n×p.
Let us now turn to the form of X(σ; s). We

immediately see that L”T {X(σ; s)} = 0 because
it is a state transition matrix for (1), and clearly
T {L”T {X(σ; s)}} = T {0} = 0. Since T commutes with
LT and with dα/dσα for any α ∈ N, we get

T {L”T {X(σ; s)}} = L”T {T {X(σ; s)}} = 0. (3)

Equation (3) implies that T {X(σ; s)} is a state transi-
tion matrix of (1). Being formed by the basis elements of
the kernel of the linear operator L”T , the state transition
matrix T {X(σ; s)} can be expressed as a combination
of the elements kj(σ) of a base of ker{L”T }, i.e. , as a
combination of the columns of X(σ; s). From elementary
representation theory, a representation of the linear oper-
ator T is a matrix, therefore such combination is linear.
These remarks lead to

T {X(σ; s)} = X(σ +Σ; s) = X(σ; s)C. (4)

where the matrix C ∈ R
p×p is constant because T com-

mutes with dα/dσα.
Since the exponential function is never null, without

any loss of generality we can require that the form of
X(σ; s) is X(σ; s) = M(σ; s) exp[F(σ − s)], where F ∈
R

p×p is a constant matrix. Using this in (4)

T
{

M(σ; s) eF(σ − s)
}

= M(σ +Σ; s) eF(σ +Σ− s)

= M(σ; s) eF(σ − s)C (5)

that is satisfied only if C = exp(FΣ) and M(σ +Σ; s) =
M(σ; s), which is the result we set to prove. Repeating
the proof with a time translation operator acting on s,
we finally find that M(σ; s) is periodic also with respect
to s. This completes the proof of the theorem.
Because of the generalized Floquet theorem, a solution

of (1) is

z0(σ) = M(σ; 0) eFσ c′0 = M(σ; 0)Q eDσ c0 (6)

where D ∈ R
p×p is a diagonal matrix corresponding to

the solution of the eigenvalue problem FQ = QD, and
c′0 = Qc0 ∈ R

m is a constant vector. Choosing c0 = ej
(the j-th element of the canonical unit vector base of Rp),
Eq. (6) yields the general form of the solution

z0(σ) = rj(σ) e
λjσ j = 1, . . . , p, (7)

where λj is the j-th diagonal element of D (Floquet
exponent) and rj(σ) is a Σ-periodic vector function
(Floquet direct eigenvector). Notice that D is not
uniquely defined, since for every λj any complex number
λj + ik2π/Σ (k integer) still satisfies (7) with r′j(σ) =
rj(σ) exp(−ik2πσ/Σ). However, the Floquet multipliers
µj = exp(λjΣ) are in number of p. Dropping the index
j, substituting (7) into (1) yields

dr

dσ
+ λr = e−λσ LT

{

eλσ r, σ
}

, (8)

where the right hand side is Σ-periodic because the left
hand side is.
Dynamical systems with memory. A first application

of the generalized Floquet theorem is to dynamical sys-
tems with memory [14]. We consider nonlinear dynamical
systems described by a differential equation of the type

dy

dt
= f(y, t) + L’T {g(y, t), t} (9)

where y : R → R
n, f ,g : R

n+1 → R
n are nonlinear

vector fields with f T -periodic with respect to t, and L’T
is a generic, linear integro-differential operator such that
L’T {g(y, t), t} is T -periodic if y(t) is T -periodic. We
assume that (9) admits a T -periodic solution yS (limit
cycle).
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The study of the perturbation of the limit cycle yS

is important both for assessing the stability of the solu-
tion and for analyzing the effect of small-amplitude forc-
ing terms such as the Langevin sources used to represent
fluctuation effects. Perturbations are studied by lineariz-
ing (9) around yS yielding a linear periodic time-varying
system

dz

dt
= A(t)z+ L’T {B(t)z, t} + b(t) (10)

where z = y − yS : R → R
n, A(t) is the T -periodic

Jacobian matrix of f(·, t) and B(t) is the Jacobian matrix
of g(·, t) both evaluated in the limit cycle, and b(t) is
the perturbation forcing term. Finally, LT is the linear
operator defined as LT {·, t} = A(t) ·+L’T {B(t)·}. The
solution of the homogeneous equation associated to (10)
(i.e., the case b(t) = 0) is denoted as z0(t).
Dynamical systems with memory are included in (10)

as convolution operators:

L’T {Bz, t} =

∫ t

t−r

K(t; τ)z(τ) dτ (11)

where r > 0 and K is a matrix such that the integral
of K(t; τ) with respect to τ is bounded for every t, and
K(t + T ; τ + T ) = K(t; τ). The latter condition (some-
times called bi-periodicity) is not enough to guarantee
the periodicity of LT for any z (see above), but it is just
true when z is T -periodic. Furthermore, it is simple to
prove that LT commutes with T , thus implying that the
generalized Floquet theorem applies for the solution of
the homogeneous part of (10).
The asymptotic stability analysis of yS(t), therefore,

clearly depends on the computation of all the eigenvalues
of F: this procedure depends on the explicit form of LT ,
and in general leads to p classes of Floquet exponents
λ [20]. According to the previous discussion, each class
is characterized by an infinite set of complex numbers
having the same real part, and imaginary parts differing
by integer multiples of 2π/T .
Another important remark is that direct substitution

proves that the general solution of (10) can be written as

z(σ) = X(σ; 0)c0 +

∫ σ

0

X(σ; η)b′(η) dη (12)

where c0 is a constant vector of size p, and b′(σ) is a
solution of

X(0; 0)b′(σ) = b(σ) + LT

{
∫ σ

0

X(σ; η)b′(η) dη

}

−

∫ σ

0

LT {X(σ; η)}b′(η) dη. (13)

This result can be used, for example, to study phase and
amplitude noise in autonomous (self-oscillating) systems,
extending [9, 10], e.g., to the case of electronic oscillators

including distributed circuit elements (namely, transmis-
sion lines).
Finally, the results of the theorem can be extended to

operators of type (11) for r → +∞ under the following
conditions: when r → +∞, because of the properties of
K, K(σ, η) → 0 for η → −∞ and any σ. For any ǫ > 0

there is an r = r(ǫ) such that
∣

∣

∣

∫ σ−r

−∞
K(σ; η)yS dη

∣

∣

∣
< ǫ

being yS Σ-periodic and integrable. Thus, for any ǫ we
can approximate an infinite memory system with (11).
In this sense our theorem guarantees that the solution of
the homogeneous part of system (10) is given by (7) for
σ ∈ [−r + s, s+Σ] and for any r < +∞.
Quantum systems with non-local potentials. The sec-

ond application we consider relates to single-particle
quantum systems (with mass m) characterized by the
3D time-independent Schrodinger equation where the po-
tential energy linear operator V{ψ,x} commutes with a
properly defined 3D extension of the translation operator
T (ψ(x) is the particle wave-function).
We assume that three linearly independent spatial vec-

tors nα (α = 1, 2, 3) exist such that a = k1n1 + k2n2 +
k3n3 (kα ∈ Z) defines the direct space lattice in which
the particle is embedded. The generalized 3D translation
operator is defined as T nα

= T n1,α
T n2,α

T n3,α
, where

T ni,α
is the translation operator acting only on the i-th

(i = 1, 2, 3) component of nα [21].
In order to apply the generalized Floquet theorem, we

need to reduce the problem from 3D to 1D. The first step
is to define a transformation matrix R that transforms
the three basis vectors nα into the canonical basis of R3:
Rnα = eα. Correspondingly, we have the transformed
spatial variable x̃ = Rx and the transformed second or-
der operator defining the differential part of Schroedinger
equation ∇2 = (R∇̃)2, where the power should be in-
tended as a scalar product. Also the shift operator is
modified by the variable transformation: in the canonical
base the shift operator becomes T eα

= T x̃α
(α = 1, 2, 3)

where the period Σ is equal to 1 in all the three spatial
directions. Of course Ṽ{ψ̃, x̃} = V{ψ,x} commutes with
T eα

(α = 1, 2, 3), and ψ̃(x̃) = ψ(R−1x̃) = ψ(x).
The orthogonalization of the direct lattice made pos-

sible by R allows us to transform the 3D equation into
three different couples of 1D first order differential equa-
tions. Each of the couples is expressed as differential with
respect to one transformed spatial variable at a time, but
of course the solution must be the same for all the possi-
ble choices. For instance, with respect to x̃1 we have (Ri

is the i-th column of R, ∂̃j the partial derivative with
respect to x̃j)

∂̃1ψ̃ = χ̃1 (14a)

∂̃1χ̃1 =
1

R2
1

2m

~
2

{

Ṽ{ψ̃} −

[

E +
~
2

2m

(

R2∂̃2 +R3∂̃3

)2
]

ψ̃

}

+
2

R2
1

R1 ·
(

R2∂̃2 +R3∂̃3

)

χ̃1 (14b)
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where E is the particle energy. Similar systems can be
derived with reference to spatial derivatives with respect
to x̃2 and x̃3, and introducing χ̃β = ∂̃βψ̃ (β = 2, 3).
Since the right hand side of (14) commutes with T x̃1

for Σ = 1, the generalized Floquet theorem can be ap-
plied to obtain the general solution

ψ̃(x̃) = c1(x̃2, x̃3) e
λ1(E)x̃1 ũ(x̃;E) (15a)

where ũ(x̃;E) is periodic with period equal to 1 as a func-
tion of x̃1. Notice that λ1 depends on E only (and not
on x2 and x3) because exp(λ1) pertains to the spectrum
of T x̃1

. Similarly, by solving the other two equations

ψ̃(x̃) = c2(x̃1, x̃3) e
λ2(E)x̃2 ũ(x̃;E) (15b)

ψ̃(x̃) = c3(x̃1, x̃2) e
λ3(E)x̃3 ũ(x̃;E). (15c)

Imposing that (15) defines in three different ways the
same wavefunction, it can be easily shown, express-
ing the c coefficients in exponential form and equating
(15a)–(15c), that the three coefficients ci are equal to
exp(λj x̃j) exp(λkx̃k) (with j 6= k 6= i). Therefore, col-
lecting the λj(E) in a vector λ of size 3, we have the
general solution of the 3D Schroedinger equation in real
space as

ψ(x) = eλ(E) ·Rx u(x;E) = eR
T
λ(E) · x u(x;E)

(16)
Since (14a) and (14b) are of size 2, there are at least

two vector Floquet exponents for each E value. However,
for a non-local potential energy V, according to the gener-
alized Floquet theorem, for each value of E more values
(possibly infinite) than the pure local potential case of
λ(E) are possible depending on the specific shape of V.
Imposing that the normalization constant over a unit

cell of the direct lattice is independent of the chosen cell
(invariance with respect to a combination with integer
coefficients of the nj unit vectors), one finds RT

λ(E) =
±ik(E) that reduces to progressive and regressive plane
waves for a local potential energy (p = 2), k being the
Bloch function wavevector (and, thus, k(E) the corre-
sponding band diagram). In other words, the dispersion
relation E(k) is an even function. Notice that, e.g., in
the presence of a magnetic field, time-reversal invariance
is broken thus lifting Kramers degeneracy. A magnetic
field implies the appearance of an imaginary term in the
Hamiltonian that, in turn, no longer yields conjugate
imaginary λ(E) values (and the following parity of the
dispersion relation as a function of the Bloch wavevec-
tor).
Thus, we can summarize the two main results we

find from including the nonlocal potential into the
Schroedinger equation as follows: i) we still have Bloch
waves as solutions of the time-independent Schroedinger
equation, ii) the dispersion relation E(k) can qualita-
tively change according to the number of k vectors asso-
ciated to the energy. The latter result is too complex to

be fully described here, so to provide physical insight we
limit the description to the 1D case, although the same
conclusions can be extended to the 3D case. For a local
potential in the absence of magnetic field, since E(k) is
an even function of k, and for each k value only two al-
lowed energy states are available (for ±k) with the same
energy, the band diagram can exhibit an extremum only
at the center of the first Brillouin zone (FBZ) or at its
borders: the band diagram is monotonic as a function of
k in each half of the FBZ.

On the other hand, for non local V we may have p > 2
– although always an even number, because the normal-
ization condition involves the presence of imaginary con-
jugate λ values – thus leading to the possible occurrence
of non-monotonic dispersion relations E(k) in each half
of the FBZ (i.e., the energy bands may show extrema
also within the half FBZ, while this is forbidden for local
potentials). Furthermore, by tuning the strength/shape
of the non local part of the potential energy, energy band
crossings in the first Brilluoin zone may be observed,
leading to possible quantum phase transitions.

Conclusions. In conclusion, we have stated and
proved a theorem that generalizes the standard Floquet
theory to a wide class of systems, that includes those
whose state depends on the full past dynamics, and those
whose potential energy profile, albeit spatially periodic,
is non local. Such a theorem greatly expands Floquet
analysis to systems that were previously inaccessible by
such a theory, making it a tool with even greater poten-
tial in several areas of science and technology.

For instance, the extension to dynamical systems with
memory characterized by a time periodic limit cycle
opens the way to a consistent stability theory for such
systems. Examples of applications are related to, e.g., all
those electronic circuits containing distributed elements,
such as transmission lines. In this area, Floquet theory
is also exploited to assess the properties of autonomous
systems including the effect of stochastic fluctuations,
leading to the phase and amplitude noise analysis of a
wide range of oscillators, such as electronic periodic sig-
nal generators [10] or optical sources such as lasers [8, 22].
Furthermore, this work opens the way to the analysis of
Bloch states in condensed matter systems characterized
by non-local potentials. Interesting results are already
available even at this early stage of application, such as
the possible occurrence of multi-valued dispersion rela-
tions and the possibility to tune the non-locality to in-
duce quantum phase transitions.
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