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We present a measurement protocol for discriminating between two different quantum states of
a qubit with high fidelity. The protocol, called null value, is comprised of a projective measure-
ment performed on the system with small probability (a.k.a. partial-collapse), followed by a tuned
postselection. We report on an optical experimental implementation of the scheme. We show that
our protocol leads to an amplified signal-to-noise ratio (as compared with a straightforward strong
measurement) when discerning between the two quantum states.
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The notion of “measurement” was part of the early
framework of quantum mechanics. Since early develop-
ments, the discord between information acquisition on
the system and the corresponding disturbance of the sys-
tem’s state became clear. The contest of obtaining infor-
mation while keeping minimal disturbance is still an ac-
tive and vibrant field of study that has branched off into
many sub-topics. Of note and of great practical interest
in quantum information processing is the study of quan-
tum state discrimination [1–4]. The ability to optimally
discriminate between non-orthogonal quantum states de-
pends on the fidelity of the measurement apparatus and
on the amount of prior knowledge one has on the states
between which he wants to distinguish.

Here we introduce a novel procedure to enhance the
discrimination-fidelity between two quantum states. Our
procedure introduces the notion of quantum measure-
ments with postselection in the field of quantum infor-
mation processing. Our two-step measurement protocol
is related, but differs from, the celebrated weak value
(WV) measurement protocol, where postselected quan-
tum measurements were first introduced [5]. We choose
to demonstrate our new approach by focusing on a spe-
cific discrimination problem. In conjunction with our
theoretical analysis, we report on experimental results
involving classical light, which demonstrate the practi-
cality of our measurement protocol, denoted “null value”
(NV) measurement protocol.

In the original works on quantum state discrimination,
the observer is handed a single copy of the state to be
discriminated, which may be either one of the a-priori
known pure states |A〉 and |B〉. Well adapted to this task
is the approach known as minimum error state discrim-
ination [1], for which it was shown that the minimum
error is obtained by optimizing the axis of a standard
two-outcome measurement. A second approach is the
unambiguous state discrimination [6–8] where the mea-
surement produces either an error-free or an inconclusive

result, i.e., the measurement apparatus is oriented such
that it has three-outcomes – the state is either A, B or
unknown.

Developments on the original works led to many vari-
ants of state discrimination, such as discrimination be-
tween two a-priori unknown pure states [9, 10], as well
as discrimination between mixed states [11, 12]. Further
works (see e.g., Refs. [13, 14]) introduced also the notion
of multi-copy state discrimination (employing a number
of copies of the state to be discriminated). For such
schemes, the notion of individual vs. collective measure-
ments was introduced depending on whether the strat-
egy consists of individual measurements each of which
performed separately on a single copy, or a single mea-
surement which is performed on all the copies as a whole.
Notably, however, in most standard measurement proce-
dures one performs individual measurements on N single
copies. Thus, it is necessary to define statistical tests to
quantify the fidelity of the discrimination [15].

In the present scheme, we study a specific variant of
the quantum state discrimination problem: the observer
prepares a device (a protocol) that should discriminate
whether the provided state is equal to the known state
|ψ0〉 or not, i.e. is some other nearby state |ψδ〉. Not-
ing the context of earlier works on state discrimination,
our variant applies to both single-copy and many-copy
analyses [16]. In the former, due to the a-priori unknown
orientation of |ψδ〉, a minimum error state discrimina-
tion is under-constrained. Additionally, an unambigu-
ous state discrimination is impossible as the unknown
state would generate both erroneous and inconclusive re-
sults. Such a case, dubbed “intermediate discrimination
scheme” has been treated for discrimination between two
different states (see e.g., Refs. [17–19]).

We present our analysis henceforth for discrimination
between two-level states (qubits). Assuming that the
probability distribution of |ψδ〉 is uniform on the Bloch
sphere in some area around |ψ0〉, we have analyzed the
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single-copy minimum error and the single-copy interme-
diate schemes vis-a-vis our discrimination problem [16].
For the former, we obtain that, regardless of the area of
the distribution, minimum error is obtained for a stan-
dard measurement in the direction orthogonal to |ψ0〉.
For the latter, we recall that a three-outcome measure-
ment on a qubit can be realized by two-consecutive mea-
surements [3]. Their optimal orientations depend on
the area of the distribution. For discrimination between
nearby states (|ψ0〉 or not |ψ0〉), the optimal orientations
of both measurements are nearly orthogonal to |ψ0〉. By
contrast, when the probability distribution of |ψδ〉 covers
the entire Bloch sphere the first of the two measurements
is oriented in the direction of |ψ0〉 itself.

Alas, a single-copy approach is unfit for most experi-
mental situations due to measurement device imperfec-
tions and noise. One then resorts to a multi-copy ap-
proach. Here one considers a statistical test (signal-to-
noise ratio, SNR) that, given N replicas of the state,
would result in a discrimination outcome (|ψ0〉 or not
|ψ0〉) with some given fidelity. Below we define such
SNRs and employ them to compare a multi-copy version
of both the minimum error scheme and the intermedi-
ate scheme, focusing on a discrimination between nearby
states. For the intermediate scheme we consider a corre-
lated signal, dubbed null value signal, for a reason that
will be made clear below. The SNR obtained by a NV
signal proves to be higher than that obtained by single
von Neumann measurements. We further show that the
analysis in terms of optimal SNR fully agrees with a mini-
mization of error probability in the single-copy cases [16].

Let us begin with analyzing the SNR of the discrimina-
tion, achieved through individual standard strong mea-
surement, Ms, on N copies of a qubit. In this benchmark
case, the occupation of the state |M〉, defined by polar
angle θM , is measured [20]. The probabilities to detect
the qubit states |ψ0〉 and |ψδ〉 with polar angles 0 and δ in
|M〉 in any single attempt are P (Ms,0) = | 〈M |ψ0〉 |2 and
P (Ms,δ) = | 〈M |ψδ〉 |2, respectively. We define a statis-
tical measure to be the difference between the number of
positive detections

Sstd = N |P (Ms,δ)− P (Ms,0)| ∼= |Ns,δ −Ns,0| , (1)

where the right hand side is the measured estimator. The
signal is a function of two variables Sstd(Ns,δ, Ns,0). The
uncertainty in the signal is then given by

∆Sstd =

√(
∂Sstd

∂Ns,δ

)2

∆N2
s,δ +

(
∂Sstd

∂Ns,0

)2

∆N2
s,0 . (2)

We assume Poissonian noise (which is dominant for co-
herent light experiments discussed below), i.e., ∆N2

s,δ =

Ns,δ and ∆N2
s,0 = Ns,0. Thus, ∆Sstd =

√
Ns,δ +Ns,0,

and the obtained SNR is

SNRstd =
Sstd

∆Sstd
≈
√

2| sin[θM ]|δ
√
N , (3)

FIG. 1. A tree diagram of the qubit state evolution under sub-
sequent partial-collapse measurements; the respective proba-
bilities are indicated: P (Mw) [P (M̄w)] is the probability that
the detector “clicks” [no “click”] upon the first measurement.
If it does “click”, the system is destroyed, hence there are no
clicks upon further measurements [this is marked by a (red)
X]. Note that following P (M̄w) (null detection of the qubit),
the back action rotates |ψ〉 into |ψp〉.

where the approximation is for δ � 1. Indeed, in this
approach the maximal SNR is obtained when the mea-
surement orientation, |M〉, is orthogonal to |ψ0〉. This
corresponds to the optimal measurement orientation ob-
tained by the single-copy analysis.

Turning to the multi-copy intermediate discrimination,
we define a SNR by constructing a correlated outcome
out of the three-outcome measurement. Recall that such
a measurement is implemented by measuring the qubit
state twice (cf. Fig. 1) [16]. The first measurement Mw is
a strong (projective) measurement which is performed on
the system with small probability. Here the basis states
{
∣∣M̄〉 , |M〉} are measured with probabilities {p0, p1}, re-

spectively. For simplicity, hereafter, we assume that only
the state |M〉 is measured with probability p1 = p and
p0 = 0. If the detector “clicks” (the measurement out-
come is positive), the qubit state is destroyed. Very im-
portantly, having a “null outcome” (no click) still results
in a back action on the system. We refer to this stage of
the measurement process as “partial-collapse” [21]. Sub-
sequently the qubit state is (strongly) measured a second
time (postselected), Ms, to be in the state |ψf 〉 (click) or∣∣ψ̄f〉 (no click), where |ψf 〉 has a polar angle of θf . We
propose to discriminate between the two possible initial
qubit states by individual application of this measure-
ment protocol on N copies of |ψ0〉 and |ψδ〉. Motivated by
WVs, the compared observables are the counter-causal
conditional outcome of [having a click the first time con-
ditional to not having a click the second time], denoted by
P (Mw,0|M̄s,0) and P (Mw,δ|M̄s,δ), respectively. Events in
which the qubit is measured strongly (in the second mea-
surement), Ms, are discarded. In other words, we define
our signal to be

SNV ≡ N
∣∣P (Mw,δ|M̄s,δ)− P (Mw,0|M̄s,0)

∣∣ . (4)

Note that this procedure can also be written as a statis-
tical correlation between outcomes of a positive-operator
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valued measure (POVM) [16].
Our protocol takes advantage of the statistical cor-

relations between the partial-collapse and strong mea-
surements. To shed some light on its outcome we cal-
culate explicitly the conditional probabilities following
the measurement procedure sketched in Fig. 1. For ex-
ample, if the first measurement results in a “click” the
system’s state is destroyed and any subsequent measure-
ment on the system results in a null-result. This rep-
resents a classical correlation between the two measure-
ments. By contrast, P (M̄s|M̄w) embeds non-trivial quan-
tum correlations [22]. Using Bayes theorem, we can write
P (Mw,δ|M̄s,δ) ∼= Nw,δ/(Nw,δ + Np,δ), where we used
the measured estimator for the conditional probability,
namely, we denoted Nw,δ ∼= NP (Mw,δ) as the number
of clicks in the (first) partial-collapse measurement and
Np,δ ∼= NP (M̄w,δ)P (M̄s,δ|M̄w,δ) as the number of no-
clicks in the (second) postselection [16]. This finally leads
to the measured signal

SNV
∼= N

∣∣∣∣ Nw,δ
Nw,δ +Np,δ

− Nw,0
Nw,0 +Np,0

∣∣∣∣ . (5)

In complete analogy with the case of a single strong mea-
surement, the signal is now a function of four variables
SNV(Nw,δ, Np,δ, Nw,0, Np,0), and we can define the un-
certainty, ∆SNV, in the statistical test [cf. Eq. (2)] [16].

We focus on obtaining a large SNRNV = SNV/∆SNV

for discriminating between the two states. It depends
on the choice of the measurement orientations, |M〉 and
|ψf 〉. We propose to perform a first measurement that
will have a back action on both states |ψ0〉 and |ψδ〉 but is
nearby the optimal orientation of the single measurement
case, i.e. taking θM = π/2 + ∆M . We propose two possi-
ble measurement schemes for obtaining a large SNRNV.
In the first scheme we choose the postselection such that
the reference state satisfies |

〈
ψ̄f
∣∣ψ0

〉
|2 = 0. This means

that the reference state |ψ0〉 would have always clicked in
the second measurement had it not been first measured
by the partial-collapse. We call this scheme A. Alterna-
tively, in scheme B, we choose the postselection such that
|
〈
ψ̄f
∣∣ψ0,p

〉
|2 = 0: the null outcome rotates the reference

state and it always clicks in the second measurement. For
both schemes, we obtain

SNRNV(N) ∼ sin2[δ]

sin[∆M + δ]
√
p

√
N , (6)

which becomes large for p → 0 (weak partial-collapse)
[16]. This is because the condition Nw,0 � Np,0 is satis-
fied vis-a-vis the NV signal of the reference state. Vary-
ing δ such that | 〈ψδ|ψ0〉 |2 decreases corresponds to a de-
crease of Nw,δ and an increase of Np,δ. A large SNRNV is
obtained when P (Mw,δ|M̄s,δ) crosses to a regime where
Nw,δ ≤ Np,δ. This happens first with scheme A. Hence,
scheme A produces a larger SNRNV for smaller δ; scheme
B leads to far larger SNRNV for larger δ. Note, also, that

FIG. 2. A sketch of the experimental apparatus. Single
spatial mode light from a helium-neon laser (HeNe) passes
through a neutral density filter (ND) followed by a half-wave
plate (HWP) and polarizer (P1) to prepare the initial state.
During data acquisition, the HWP is used to maintain a con-
stant photon flux which is measured using a removable mirror
(RM). A glass window (W) weakly reflects vertically polarized
light. Photons that pass through the window are then pro-
jected onto a linear polarization state with a second polarizer
(P2). The photons in each spatial mode are passed through
colored glass filters to block background, collected via multi-
mode fiber and sent to single photon counting modules (DN ,
DW and DP ).

taking the partial-collapse measurement to be more or-
thogonal to |ψ0〉 (∆M ) increases the SNR for δ � 1.

The postselection measurement orientations, which
produce the high SNR, coincide with those obtained
in the single-copy analysis, i.e. | 〈M |ψ0〉 | ∼ 0, p �
1, for δ � 1 [16]. This suggests that though the
spirit of the present multi-copy analysis is quite different
from the single-copy analysis, both analyses give simi-
lar guidance for optimally discriminating between non-
orthogonal states. We reiterate, however, that (as com-
pared with the single-copy approach) the statistical SNR
approach (based on NV) is better suited to most exper-
imental settings in which noise and experimental imper-
fections are present.

We measure the NV signal and its amplified SNR us-
ing an optical technique sketched in Fig. 2. Here, the
qubits are replaced by photons from a dramatically at-
tenuated coherent beam, and the measurement device
consists of polarization optics and single-photon detec-
tors. We encode the states in the polarization degree of
freedom by passing the beam through a polarizer (P1),
giving |ψδ〉 = cos[δ − ∆M ] |0〉 + sin[δ − ∆M ] |1〉, where
{|0〉 , |1〉} correspond to the horizontal and vertical polar-
ization states, respectively. We perform a (weak) partial-
collapse measurement by sending the photons through a
glass window (W) set at Brewster angle. The window
therefore weakly reflects vertically polarized light, with
probability p = 0.15, and passes horizontal light with
near unit probability. We set the second polarizer (P2)
in the transmitted arm to strongly project the photon
into the state

∣∣ψ̄f〉 which is represented by scheme A or
B , as desired [23]. From the resulting photon detections
we obtain the values of Nw,δ, Np,δ, Nw,0 and Np,0 and
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FIG. 3. A graph of the theoretical and experimental SNR
obtained for different measurement schemes. Scheme A (red
squares) and B (blue hollow circles) correspond to the null
value technique (SNRNV). The parameter δ denotes the dis-
tance between the measured and the reference state; it is var-
ied by changing the angles for the input polarizer P1. For a
given P2 and W (cf. Fig. 2) the reference state is determined
by finding P1 for which |

〈
ψ̄f

∣∣ψ0

〉
|2, |

〈
ψ̄f

∣∣ψp〉 |2 is minimal
for schemes A, B , respectively. The standard scheme (black
circles) is that defined by Eq. (3), and is represented by a
single polarizer with no weak measurement. Dots correspond
to calculations from data and lines correspond to the theoret-
ical predictions. Each scheme used approximately the same
number of photons, with N ≈ 11250 per measurement.

their variances [16].
We consider schemes A and B for ∆M = 0.1 rad and

plot the results in Fig. 3. We find that, for scheme A, we
can discriminate between the two states with a higher
SNR than the standard scheme nearly over the whole
range of angles considered. Similarly, while the SNR
of the standard technique almost coincides with that of
scheme B for small angles, we see that the sensitivity
of the two schemes diverges quickly for larger angles; in
this regime (δ ≈ ∆M ), the NV scheme B is significantly
better. The discrepancy between theory and experiment
is due to a small amount of ellipticity incurred from the
glass window not included in the theory plot [16].

The described NV procedure leading to large SNR is
based on the conditional outcome of a quantum measure-
ment. As such, it resembles the well established protocol
of WV measurement [5]. The WV protocol consists of
weakly measuring an operator Â of a system prepared
in an initial state |i〉 by weakly coupling it to a detec-
tor. The detector output is kept only if the system is
eventually measured to be in a chosen final state, |ψf 〉—
postselection. The obtained conditional average of Â,
〈f | Â |i〉 / 〈f | i〉, is named weak value, and can be anoma-

lously large [5]. This property has been exploited for am-
plifying small signals both in quantum optics [24–28] and
in solid state physics [29]. It is important to stress that
the NV protocol is different from the WV protocol. The
former makes use of a partial-collapse measurement of the
operator Â, in which the system experiences back action
only for a subset of all possible measurement outcomes,
while a strong projection takes place for the remaining
outcomes. This is not a weak measurement, which is used
by the WV protocol. The obtained conditional average
of Â is now the NV, (1/p)P (Mw|M̄s) = 〈i| Â |i〉 /P (M̄s).
It is quantitatively different from the WV even when p
is explicitly “weak” [30]. Moreover, while a large WV
leads to an amplification of the SNR for systems where
the noise is dominated by an external (technical) com-
ponent [26, 29], the method presented here leads to high
fidelity discrimination between quantum states on the
background of quantum fluctuations.

In conclusion we have presented here a new protocol
based on a partial-collapse measurement followed by a
tuned postselection. Our protocol enables one to dis-
cern between quantum states with better accuracy than
a standard measurement would allow. By contrast to
earlier protocols [3] tuned to discriminate between two
prescribed states, the present one facilitates the study of
an amplified SNR for a wide range of possible polariza-
tions of one of the states, which is not a-priori known.
We have demonstrated the feasibility and effectiveness
of our protocol by employing an optical setup for dis-
criminating between different polarization states of light.
Notably, our present approach is based on a statistical
analysis, which makes it particularly suitable for experi-
ments.
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