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Recently, it has been argued that no extension of quantum theory can have improved predictive
power, under a strong assumption of free choice of the experimental settings, and validity of quantum
mechanics. Here, under a different free choice assumption, we describe a model which violates this
statement for almost all states of a bipartite two-level system, in a possibly experimentally testable
way. From consistency with quantum mechanics and the non-signalling principle, we derive a bound
on the local averages for the family of deterministic ontological theories our model belongs to.
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Introduction — In this work we address the following
question: could a theory, which is conceived as a com-
pletion of quantum mechanics, be experimentally distin-
guishable from it? By completion we mean that the the-
ory should be consistent with quantum mechanics, that
is, it should fully reproduce all the quantum outcomes
in a suitable regime, but it could provide a more refined
description of the microscopic reality. By experimentally

distinguishable we mean that there should not be physical
principles making this deeper description fully unaccessi-
ble to any observer, irrespective of experimental compli-
cations. For instance, these are the features of classical
mechanics when compared to statistical mechanics [20].
In practice, the completion involves the consideration of
the so-called ontic state of the system, the (in principle)
most accurate specification of its physical state. The re-
quest of the experimental testability of the completion
does not require the precise knowledge of the ontic state,
but only the accessibility of some information about it,
which allows more accurate predictions than those im-
plied by the mere knowledge of the quantum state vector.

Among others issues, the question we have raised at the
beginning has been recently answered in the negative un-
der a specific assumption of free measurement choice [2].
In this paper we exhibit a model which provides a pos-
itive answer, opening new perspectives on the debate of
the completeness of quantum mechanics. For determin-
istic ontological models of this type describing a pair of
two-level systems, we also derive constraints concerning
how the local averages can differ from the quantum ones.

The family of completions of quantum mechanics has
been usually denoted as hidden variable models, although
more recently the term ontological models is preferred. In
the past, the main motivation for their introduction was
the attempt to provide a description of the micro-world as
close as possible to that of the macro-world, interpreting
all (or some of) the non-classical features of quantum me-
chanics (as probabilism and non-locality) as ignorance of
the ontic state [1], supplying a richer information on the

state of the system than that given by the state vector of
standard quantum theory. After the theorems of Bell [3]
and Kochen-Specker [4], proving that non-locality and
contextuality are unavoidable in these theories, other is-
sues are investigated, noticeably the meaning of the quan-
tum state, as describing an element of reality or rather a
state of knowledge [5–7], the possibility to deviate from
quantum mechanics [8–11], the role of the measurement
independence assumption [12, 13], and the dimension of
the ontic state space [14–16]. We describe in more detail
the aspects which are relevant for this work.
In quantum mechanics, the state of a system is rep-

resented by a vector ψ in a suitable Hilbert space. Ob-
servable quantities are represented by Hermitian opera-
tors, whose spectra contain the only possible measure-
ment outcomes. For general states, these outcomes are
known only probabilistically. Completeness of the the-
ory means that it is impossible to have a more detailed
description of the state than that given by ψ, even in
principle. In particular, only a probabilistic knowledge
of measurement outcomes is possible. We consider a bi-
partite system, the separated subsystems being identified
by A and B. The observables pertaining to these subsys-
tems are denoted by A(a), B(b), and the corresponding
Hermitian operators by Â(a), B̂(b), where a and b are
vectors which identify the specific observables taken into
account.
In an ontological model of quantum mechanics there is

a deeper specification of the state of the system, the ontic
state λ, living in a space which, for what concerns us, is
not relevant to identify precisely. For sake of simplicity
we assume that λ are continuous variables, but our con-
siderations apply to completely general cases. The ontic
state represents the complete description of the state of
the system [21], which, however, is not fully accessible.
To each state ψ is associated a distribution ρψ(λ), with
ρψ(λ) > 0 and

∫

ρψ(λ)dλ = 1 for allψ. (1)



2

These distributions might have overlapping supports for
different ψ or not [1]. We limit our attention to deter-
ministic ontological models, in which the measurement
outcomes are fully specified by the ontic state (more gen-
erally, λ could determine only their probabilities). Con-
textuality implies that these outcomes can depend on the
full context of measured observables; we will then denote
them as Aψ(a, b, . . . , λ) and Bψ(a, b, . . . , λ), depending
on the subsystem they refer to. Consistency of the on-
tological models with quantum mechanics means that all
the quantum averages are reproduced, in particular

∫

Aψ(a, b, . . . , λ)ρψ(λ)dλ = 〈A(a)〉ψ , (2)

for the local averages, where 〈A(a)〉ψ = 〈ψ|Â(a)|ψ〉 and
similarly for B. But also quantum correlations should be
obtained,
∫

Aψ(a, b, . . . , λ)Bψ(a, b, . . . , λ)ρψ(λ)dλ = 〈A(a)B(b)〉ψ ,

(3)
where 〈A(a)B(b)〉ψ = 〈ψ|Â(a)⊗ B̂(b)|ψ〉.
Notice that the ontic state λ is necessarily not fully ac-

cessible. In fact, in a theory like the one we are devising,
it is just the ignorance of the precise value of λ which
cancels non-locality in the averages (2), in accordance
with the fact that quantum mechanics does not allow
faster-than-light communication. Nonetheless, at least
in principle, one can investigate whether it is possible to
avoid superluminal communication while taking advan-
tage of some information on λ. It is exactly this property
which must characterize a completion of quantum theory
which could be experimentally distinguishable from it,
the crucial problem addressed in this paper.
With this in mind, suppose that λ is equivalently de-

scribed by two variables (µ, τ), where µ denotes the un-
accessible part, i.e. the one which must be averaged over,
and τ the accessible one. Knowledge of τ should not al-
low superluminal communication; therefore, by writing
ρψ(λ) = ρψ,τ (µ)ρψ(τ), we can compute

∫

Aψ(a, b, . . . , λ)ρψ,τ (µ)dµ = fψ(a, τ),

∫

Bψ(a, b, . . . , λ)ρψ,τ (µ)dµ = gψ(b, τ), (4)

which are the local averages of the theory at the interme-
diate level. They express the non-signalling conditions in
our context. It remains true that the theory reproduces
quantum mechanics when τ is averaged over,

∫

fψ(a, τ)ρψ(τ)dτ = 〈A(a)〉ψ ,

∫

gψ(b, τ)ρψ(τ)dτ = 〈B(b)〉ψ , (5)

but, if the state vector ψ is supplemented with the infor-
mation on τ , the theory could be experimentally distin-

guishable from quantum mechanics [22]. Theories hav-
ing this structure have been initially introduced by A.
Leggett [8], and then further analyzed in the case of maxi-
mally entangled states [9, 10]. Here we provide one model
fitting this class, describing arbitrarily entangled states.
A model with non trivial local averages — The model

is a generalization to arbitrary states of the famous Bell’s
model for the singlet state of a pair of two-level systems,
and its details can be found elsewhere [18]. Here we
review only the main results using a different notation,
which is more convenient for the present purposes. An
arbitrary state ψ is written as

|ψ〉 = sin
θ

2
|00〉+ cos

θ

2
|11〉, (6)

with θ ∈ [0, π/2]; if θ = 0, |ψ〉 is a separable state state;
if θ = π/2 it is a maximally entangled state. The hidden
variable λ is a unit vector in the 3-dimensional real space
and the pair {ψ, λ} is identified with the ontic state. We
consider local observables represented by the operators
Â(a) = σ ·a and B̂(b) = σ · b, where a and b are real, unit
vectors and σ = (σx, σy, σz) is the vector of Pauli matri-
ces. In particular, σz is defined so that |0〉 and |1〉 are its
+1 and −1 eigenvectors respectively. For sake of simplic-
ity we assume that a and b lie in the plane orthogonal
to the direction of propagation of the entangled parti-
cles [23]. The possible outcomes are in the set {−1, 1},
and they are defined as

Aψ(a, b, λ) =

{

+1, if â · λ > cos ξ,
−1, if â · λ < cos ξ,

(7)

and

Bψ(b, λ) =

{

+1, if b · λ > cosχ,
−1, if b · λ < cosχ.

(8)

In the previous relations, â = â(a, b) is in the plane of a
and b, as detailed in [18]; moreover, cos ξ = −〈A(a)〉ψ ,
and cosχ = −〈B(b)〉ψ .
In [18] it has been proved that this model is predic-

tively equivalent to quantum mechanics when λ is uni-
formly distributed on the unit sphere, ρ(λ) = 1/4π. At
this point, we express λ by using spherical coordinates
(µ, τ), whose pole is identified by the direction of the in-
coming particle; µ is the azimuthal angle and τ the polar
angle. They represent the unaccessible and the accessible
part of λ, respectively. In (4) we have ρψ,τ (µ) = 1/2π,
and, by construction, integration over µ cancels non-
locality in local averages. We find that

fψ(a, τ) =
1

π
cos−1

(

2〈A(a)〉2ψ

sin2 τ
− 1

)

− 1, (9)

if |τ − π
2
| 6 ξ and fψ(a, τ) = −1 otherwise, and a sim-

ilar relation (with ξ replaced by χ) for gψ(b, τ), which
clearly shows that in general fψ(a, τ) and gψ(b, τ) differ
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from the local quantum averages. While this toy-model
is completely artificial, it provides evidence that mod-
els compatible with quantum mechanics, but in principle
distinguishable from it, are indeed possible, with mea-
surement settings a and b freely chosen.
On the local averages of any ontological theory — The

requirements of equivalence with quantum mechanics and
the non-signalling conditions put severe constraints on
the probabilities at the intermediate level. In the follow-
ing, we derive a bound on the local averages of any de-
terministic ontological model for quantum mechanics de-
scribing a pair of 2-level systems arbitrarily entangled, at
the intermediate level. We adopt the aforementioned de-
scription of the ontic state in terms of the state vector, ψ,
of an additional accessible part, τ , and a non-accessible
one, µ, and assume that this splitting is independent of
the local settings a and b.
While our derivation holds for both subsystems, for

sake of simplicity we focus on the A part and its cor-
responding local average fψ(a, τ). As a measure of the
distance between the local averages at the intermediate
level of the ontological theory and quantum mechanics
we introduce the quantity

δψ(a) =

∫

(

fψ(a, τ) − 〈A(a)〉ψ

)2

ρψ(τ)dτ, (10)

which is the variance of the variable fψ(a, τ) over the dis-
tribution ρψ(τ). We consider a generic observable A(a),

represented in quantum mechanics by Â(a) with eigen-
values ±1. By elementary manipulations of (10), and
considering that fψ(a, τ) ∈ [−1, 1], we can write

δψ(a) 6

∫

|fψ(a, τ)|ρψ(τ)dτ − 〈A(a)〉2ψ . (11)

We now focus on the integral in the r.h.s. of this inequal-
ity. Since Â(−a) = −Â(a), it follows that Aψ(−a) =
−Aψ(a), and then fψ(−a, τ) = −fψ(a, τ). Consider
2n+ 1 unit vectors γj , j = 0, 1, . . . , 2n such that γ0 = a
and γ2n = −a. Further assume that 2n pairs of local
measurements are performed according to the following
scheme: (i) when j is even, the local observables are given
by A(γj) and B(γj+1); (ii) when j is odd, the local ob-
servables are given by A(γj+1) and B(γj). The measure-
ment outcomes for A(γj) and B(γj) are ±1. Therefore,
by using that

|Aψ(γj , γj+1, λ)−Bψ(γj , γj+1, λ)| = (12)

1−Aψ(γj , γj+1, λ)Bψ(γj , γj+1, λ),

after multiplication of both sides by ρψ,τ (µ) and integra-
tion over µ, it follows that

|fψ(γj , τ)− gψ(γj+1, τ)| 6 1− Eψ,τ (γj , γj+1), (13)

where we have defined the correlation at the intermediate
level as

Eψ,τ (a, b) =

∫

Aψ(a, b, λ)Bψ(a, b, λ)ρψ,τ (µ)dµ (14)

When j is odd, a similar argument leads to a rela-
tion analogous to (13), with γj and γj+1 exchanged.
By summing all these relations, and considering that
fψ(−a, τ) = −fψ(a, τ), we find that

|fψ(a, τ)| 6 n −
1

2

n−1
∑

k=0

(

Eψ,τ (γ2k, γ2k+1) +

+Eψ,τ (γ2k+2, γ2k+1)
)

. (15)

By further multiplying by ρψ(τ) and integrating over τ ,

∫

|fψ(a, τ)|ρψ(τ)dτ 6 min
γ1,...,γn;n∈N

Ωψ(a, n), (16)

where we have defined

Ωψ(a, n) = n −
1

2

n−1
∑

k=0

(

〈A(γ2k)B(γ2k+1)〉ψ +

+〈A(γ2k+2)B(γ2k+1)〉ψ

)

, (17)

and the minimum is taken by arbitrarily varying the vec-
tors γ1, . . . , γ2n−1, for any n. Therefore, by taking into
account the joint correlations arising in an arbitrary num-
ber of measurements, we can write

δψ(a) 6 min
γ1,...,γn;n∈N

Ωψ(a, n)− 〈A(a)〉2ψ . (18)

Notice that, when ψ is a maximally entangled state, both
terms in the r.h.s. of (18) vanish, and then fψ(a, τ) =
〈A(a)〉ψ for all a (a rigorous proof, using analogous argu-
ments, can be found in [11]). For arbitrary states, it is in
general difficult to find the minimum in (18), therefore we
have resorted to a numerical analysis, providing strong
evidence that this minimum is given by cos θ. Therefore,
we conjecture that (18) can be simply written as

δψ(a) 6 cos θ − 〈A(a)〉2ψ . (19)

In Fig. 1 we show how this constraint for δψ(a) varies
with entanglement, and plot the corresponding curve for
the aforementioned model.
Optimality of the bound — Our generalization of the

Bell’s model does not saturate the bound on the local
average at the intermediate level and this rises the ques-
tion whether this constraint is optimal or not. In gen-
eral it is not, because in (11) we have used the fact
that fψ(a, τ)

2 6 |fψ(a, τ)|, which is a strict inequal-
ity unless fψ(a, τ) ∈ {−1, 0, 1}. However, we can pro-
vide a model which saturates the bound when the lo-
cal observable is σz. This is done by modifying our
model, such that the supports on the unit sphere, where
the two outcomes Aψ and Bψ take the values +1 and
−1, remain consistent with (2), (3) and (4). We define
Aψ(a, b, λ) = −sign〈A(a)〉ψ if |µ−µa| 6 π and |τ − π

2
| 6

η, and Aψ(a, b, λ) = sign〈A(a)〉ψ otherwise, where µa
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FIG. 1: Constraint for δψ(a) as a function of entanglement,

parameterized by θ (dashed line), when Â(a) = σz. The
solid line represents δψ(a) for the generalization of the Bell’s
model. The bound can be saturated in the special case of the
local observable here considered, by redefining the outcomes
supports.

is the azimuthal angle of a, sin η = 1 − |〈A(a)〉ψ |, and
ã = ã(a, b) plays the same role of â previously defined.
Its explicit expression is not relevant here. Similarly,
Bψ(b, λ) = −sign〈B(b)〉ψ if |µ− µb| 6 π and |τ − π

2
| 6 ζ,

and Bψ(b, λ) = sign〈B(b)〉ψ otherwise, where µb is the az-
imuthal angle of b and sin ζ = 1−|〈B(b)〉ψ|. We find that
fψ(a, τ) = 0 for |τ − π

2
| 6 η, and fψ(a, τ) = sign〈A(a)〉ψ

otherwise, leading to

δψ(a) = |〈A(a)〉ψ | − 〈A(a)〉2ψ , (20)

which reproduces (19) when σz is measured.
It turns out that the bound (19) is optimal for an arbi-

trary local measurement when the state ψ is factorized,
that is, θ = 0. Also in this case, this can be proven by
redistributing the outcomes domains on the unit sphere,
in particular by defining Aψ(a, λ) = −sign〈A(a)〉ψ if
|τ − π

2
| 6 η′, and Aψ(a, λ) = sign〈A(a)〉ψ otherwise,

where sin η = 2 sin η′, and Bψ(b, λ) is defined in order
to reproduce the quantum averages. The model is local,
and the non-signalling conditions are automatically sat-
isfied. Therefore, (19) expresses the optimal bound for
δψ(a) in the extremal cases of maximal or null entangle-
ment, for generic local measurements.
Conclusions — In this work we have proven that onto-

logical models of quantum theory which are compatible
with it, but possibly experimentally distinguishable from
it, are possible. In our model, the standard free will
assumption, which involves the measurements of A and
B, is satisfied, and superluminal communication is im-
possible. Our result seems to contradict a recent result
implying that quantum mechanics is maximally informa-
tive [2], but this is not the case, since in our model we
do not rely on the same mathematical expression of the
free will assumption. Moreover, our model provides the
first example of a crypto-nonlocal theory in which the
local averages differ from the quantum mechanical ones
for arbitrary non-maximally entangled states of a pair of
qubits, and it is consistent with former results on maxi-

mally entangled states [9–11, 19]. It proves that the local
part of the hidden variables can be nontrivial, and sug-
gests that possible deviations from quantum mechanics
on the local averages could be observed also in the case
of non-maximally entangled states.

Finally, we have derived an explicit upper bound on
the local averages of any deterministic ontological the-
ory for quantum mechanics, when the system is given
by a pair of qubits. This constraint is determined by
the requirements that: (i) the theory respects the non-
signalling condition, when one takes into account the ac-
cessible part of λ, and (ii) it is compatible with quantum
mechanics, that is, its predictions are the standard ones
when the full average over λ is performed. In the case of
general local measurements, our bound is optimal only
for factorized or maximally entangled states. For arbi-
trary entanglement, it is optimal when Â(a) = σz .
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