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We apply the many-particle Schrödinger-Newton equation, which describes the co-evolution of an
many-particle quantum wave function and a classical space-time geometry, to macroscopic mechan-
ical objects. By averaging over motions of the objects’ internal degrees of freedom, we obtain an
effective Schrödinger-Newton equation for their centers of mass, which can be monitored and manip-
ulated at quantum levels by state-of-the-art optomechanics experiments. For a single macroscopic
object moving quantum mechanically within a harmonic potential well, its quantum uncertainty is
found to evolve at a frequency different from its classical eigenfrequency — with a difference that
depends on the internal structure of the object, and can be observable using current technology. For
several objects, the Schrödinger-Newton equation predicts semiclassical motions just like Newtonian
physics, yet quantum uncertainty cannot transferred from one object to another.

PACS numbers: 03.65.Ta, 03.75.-b, 42.50.Pq

Introduction and summary.— Testing non-relativistic
quantum mechanics on macroscopic objects has has been
a minor approach towards the search for effects of quan-
tum gravity. Apart from the standard formulation of lin-
earized quantum gravity [1], which seems rather implau-
sible to test in the lab, several signatures have been con-
jectured: (i) gravity decoherence [2–12], where gravity in-
troduces decoherence to macroscopic quantum superpo-
sitions; (ii) modifications to canonical quantization moti-
vated by the existence of a minimum length scale [13–15],
and (iii) semiclassical gravity [16–18], which will be the
subject of this paper. As originally suggested by Møller
[16] and Rosenfeld [17], spacetime structure might still
remain classical even if it is sourced by matters of quan-
tum nature, if we impose (G = c = 1):

Gµν = 8π〈ψ|T̂µν |ψ〉 . (1)

Here Gµν is the Einstein tensor of a (3+1)-dimensional

classical spacetime, T̂µν is the operator for the energy-
stress tensor, and |ψ(t)〉 is the wave function of all mat-
ters that evolve within this classical spacetime.

Figure 1: (Color online). Left Panel: according to standard
quantum mechanics, both the vector (〈x〉, 〈p〉) and the uncer-
tainty ellipse of a Gaussian state for the CM of a macroscopic
object rotate clockwise in phase space, at the same frequency
ω = ωCM. Right panel: according to the CM Schrödinger-
Newton Equation (2), (〈x〉, 〈p〉) still rotates at ωCM, but the

uncertainty ellipse rotates at ωq ≡ (ω2
CM + ω2

SN)1/2 > ωCM.

Many arguments exist against semiclassical gravity.
Some rely on the conviction that a classical system can-
not properly integrate with a quantum system without
creating contradictions. Others are based on “intrinsic”
mathematical inconsistencies, the most famous one be-
tween Eq. (1), state collapse, and ∇νGµν = 0 [19]. To-
wards the former argument, it is the aim of this paper to
explicitly work out the effects of classical gravity on the
quantum mechanics of macroscopic objects; although we
will find them counter intuitive, they do not seem dismis-
sible right away. In fact, we shall find these effects “right
on the horizon of testability” by current experimental
technology. Towards the latter argument, we shall re-
main open minded regarding the possibility of getting
rid of quantum state reduction while at the same time
avoiding the many-world interpretation of quantum me-
chanics [20, 21] (also see Supplementary Material).

The non-relativistic version of Eq. (1), the so-called
Schrödinger-Newton (SN) equation, has been extensively
studied for single particles [22–28]. In this paper, we
consider instead a macroscopic object consisting many
particles, and will show that within certain parameter
regimes, the center-of-mass (CM) wavefunction approxi-
mately satisfies the following SN equation:

i~
∂Ψ

∂t
=

[
−~2∇2

2M
+

1

2
Mω2

CMx
2 +

1

2
C(x− 〈x〉)2

]
Ψ. (2)

Here 〈x〉 ≡ 〈Ψ|x̂|Ψ〉 is the expectation value of CM po-
sition; ωCM is the eigenfrequency in absence of gravity,
determined by how the CM is confined; C is the SN cou-
pling constant, from which we introduce ωSN ≡

√
C/M .

For Si crystal at 10 K, we estimate ωSN ∼ 0.036 s−1, much
larger than the naively expected

√
Gρ0 from the object’s

mean density ρ0, due to the high concentration of mass
near lattice points.

For a single macroscopic object prepared in a squeezed
Gaussian state, Eq. (2) leads to different evolutions of
expectation values and quantum uncertainties, as illus-
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trated in Fig. 1. Such a deviation can be tested by op-
tomechanical devices in the quantum regime [29–33]. For
two macroscopic objects interacting through gravity, we
show further, using the two-body counterpart of Eq. (2),
that classical gravity cannot be used to transfer quantum
uncertainties — experimental demonstration of this effect
will be much more difficult than demonstrating modifi-
cations in single-object dynamics.

We emphasize that it is not our aim to use the SN
equation to explain the collapse of quantum states, or to
provide a pointer basis for gravity decoherence, as has
been attempted in the literature [22–28]. We will take
a conservative strategy, avoiding experimental regimes
with exotic wavefunctions [10–12], and restraining our-
selves to Gaussian states whose evolutions deviate little
from predictions of standard quantum mechanics: just
enough to be picked up by precision measurements. In
this way, solutions to SN equation we consider are much
less complex than those in previous literature [22–28].
Many-particle SN equation.— For n non-relativistic par-
ticles, if we denote their joint wave function as ϕ(t, X)
with 3n-D vector X ≡ (x1, · · · , xn) and xk the 3-D spa-
tial coordinate of k-th particle, then the many-particle
SN equation, obtained by Diosi and Penrose [5, 22], is

i~∂tϕ =
∑
k

[
−~2∇2

k

2mk
+
mk U(t,xk)

2

]
ϕ+ V (X)ϕ , (3)

where V (X) is potential energy for non-gravitational in-
teractions, while the Newtonian potential U is given by

∇2U(t, x) = 4π
∑
j

∫
d3nX |ϕ(t,X)|2mj δ(x−xj) . (4)

The Center of Mass and the Separation of Scales.—
Equations (3) and (4) are still not suitable for experimen-
tal studies, because we cannot separately access each par-
ticle in a macroscopic object. In optomechanical devices,
a light beam often probes (hence acts back onto) the av-
erage displacements of atoms within the first few layers of
the reflective coating of a mirror-endowed mass. Motion
of this effective surface can often be well-approximated
by the CM motion of the entire object (see [30, 31, 41]);
the error of this approximation is referred to as the “in-
ternal thermal noise”, and has been shown to be sup-
pressible below the free-mass Standard Quantum Limit
(SQL) [34], a quantum level of CM motion defined by the
object’s total mass and the measurement time scale [35].
This suppression is possible because: (i) we tend to mea-
sure CM motion by averaging over a large number of
atoms at the surface of the object, and (ii) we measure
CM motion over a time scale much longer than ones at
which atoms oscillate due to thermal or zero-point fluc-
tuations. Obtaining the SN equation for the CM is there-
fore central to the experimental test of this model. Be-
fore doing so, let us consider the separation of temporal

and spatial scales in the motion of a macroscopic piece
of crystal.

The scales of CM motion are determined externally
by how we confine the object during measurement, and
by how we measure it. Here we consider motions with
ωCM/(2π) from Hz to kHz scale. If thermal noise level
is below the free-mass SQL [34], then one can either use
optical or feedback trapping to create mechanical oscilla-
tors with coherence time τCM longer than 1/ωCM [36, 37].
Although not yet achieved, research towards sub-SQL
devices in the Hz – kHz regime is being actively pur-
sued [38, 39, 41]. In this regime, we have ∆xCM ∼√
~/(MωCM); for 1 g< M < 10 kg, ∆xCM ∼ 10−19–

10−17 m.
By contrast, the internal motions of atoms are due to

excitation of phonons [44], with a total variance of [45]

〈x2〉 ≡ B2

8π2
=

~2

mkBT

∫ +∞

0

g(ν)

ξ

(
1

2
+

1

eξ − 1

)
dν (5)

where B is also known as the “B-factor” in X-ray diffrac-
tion, ξ = hν/kBT , g(ν) is the phonon density of states;
first term in the bracket gives rise to zero-point uncer-
tainty ∆x2zp, while the second gives rise to thermal uncer-
tainty ∆x2th. These have been studied experimentally by
X-ray diffraction, through measurements of the Debye-
Waller factor [46], and modeled precisely (for Si crystal,
see Ref. [47]). Much below the Debye temperature, one
can reach: ∆xth � ∆xzp, with most atomic motion due
to zero-point fluctuations near the Debye frequency ωD.
For Si crystal, ωD ∼ 1014 s−1, ∆xzp = 4.86 × 10−12 m,
and ∆xth(293 K) = 5.78 × 10−12 m [47]. At lower tem-
peratures, ∆xth ∝ T , therefore on the scale of ∼ 10 K,
at which our proposed experiment operates, we have
∆xzp � ∆xth � ∆xCM.
SN equation for the CM.— For a crystal with n atoms,
the CM is at xCM = (1/n)

∑
k xk, motion of the k-th

atom in CM frame is yk ≡ xk −xCM. In standard quan-
tum mechanics, for inter-atom interaction that only de-
pends on the separation of atoms, the CM and inter-
nal DOFs are separable: ϕ(t,X) = ΨCM(t,x)Ψint(t, Y),
with 3(n − 1)-D vector Y ≡ (y1, · · · , yn−1). The two
wavefunctions evolve independently:

i~∂tΨCM(t,x) = HCMΨCM(t,x) , (6)

i~∂tΨint(t,Y) = HintΨint(t,Y) . (7)

For classical gravity, let us first still assume separability:
ϕ = ΨCMΨint, and we will show this remains true (with
negligible error) under evolution. Specifically, sum of SN
terms in Eq. (3) becomes

VSN(x,Y) =
∑
k

mkU(xk)/2

=
∑
k

∫
ε [x− z + yk] Ψ2

CM(z)d3z . (8)
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Here we have suppressed dependence on time and defined

ε(z) = −Gm
2

∫
ρ̃int(y)

|z− y|
d3y (9)

as half the gravitational potential energy of a mass m at
location z (in CM frame), due to the entire lattice, and

ρ̃int(y) = m

n∑
j=1

∫
δ(y − y′j)|Ψint(Y

′)|2d3n−3Y′ (10)

is the CM-frame mass density. (Note: yn ≡ −
∑n−1
j=1 yj).

We will now have to show that VSN approximately sepa-
rates into a sum of terms that either only depend on Y,
or only on x. Taylor expansion of VSN in x and z leads
to (for one direction):

VSN =
∑
k

ε(yk) + (xCM − 〈xCM〉)
∑
k

ε′(yk)

+
x2CM − 2xCM〈xCM〉+ 〈x2CM〉

2

∑
k

ε′′(yk) , (11)

with higher orders fall as powers of ∆xCM/∆xzp � 1.
Here in VSN, the first term describes the leading SN cor-
rection to internal motion, and can be absorbed into Hint.
The second term describes the interaction between CM
motion and each individual atom — it can be shown to
have negligible effects, because internal motions of dif-
ferent atoms are largely independent, and at much faster
time scales. The third term is largely a correction to the
CM motion; its main effect is captured if we replace it by
its ensemble average over internal motion (again allowed
by approximate independence between atoms, see Sup-

plementary Material):
∑
k ε
′′(yk) → C ≡

〈∑
k ε
′′(yk)

〉
,

with

C = −1

2

∂2

∂z2

[∫
Gρ̃int(y)ρ̃int(y

′)

|z + y − y′|
dydy′

]
z=0

, (12)

which is half the double spatial derivative of the “self-
gravitational energy” of the lattice as it is being trans-
lated. As this is independent from the internal motion
Y, we therefore obtain the leading correction to HCM,
which justifies Eq. (2) introduced at the beginning.
Estimates for ωSN.— Let us now estimate the magnitude
of ωSN from Eq. (12). Naively assuming a homogeneous
mass distribution with constant density ρ0 leads to

Chom ≈ GMρ0, ω
hom
SN ≈

√
Gρ0, (13)

up to a geometric factor that depends on the shape of
the object. This is a typical estimate for the gravity-
decoherence time scale for a homogeneous object pre-
pared in a nearly Gaussian quantum state with position
uncertainty much less than its size [12]. Using the mean
density of Si crystal, this is roughly 4 × 10−4 s−1. How-
ever, mass in a lattice is highly concentrated near lattice

sites; the realistic ρ̃int at low temperatures contains a
total mass of m around each lattice point, Gaussian dis-
tributed with uncertainty of ∆xzp in each direction. This
gives, through Eq. (12),

ωcrystal
SN =

√
Gm/(12

√
π∆x3zp) . (14)

For ∆xzp ≈ 4.86 × 10−12 m, we obtain ωSi
SN ≈ 0.036s−1,

nearly 100 times ωhom
SN . If we define

Λ =
(
ωcrystal
SN /ωhom

SN

)2
= m/(12

√
πρ0∆x3zp) , (15)

then Λ = 8.3× 103 for Si crystal.
Evolutions of Gaussian States and Experimental Tests.—
As one can easily prove, Gaussian states remain Gaussian
under Eq. (2); the self-contained evolution equations for
first and second moments of x̂ and p̂, which completely
determine the evolving Gaussian state, are given by:

〈 ˙̂x〉 = 〈p̂〉/M, 〈 ˙̂p〉 = −Mω2
CM〈x̂〉 , (16)

V̇xx = 2Vxp/M , V̇pp = −2M(ω2
CM + ω2

SN)Vxp , (17)

V̇xp = Vpp/M −M(ω2
CM + ω2

SN)Vxx . (18)

For covariance we have defined VAB ≡ 〈ÂB̂ + B̂Â〉/2 −
〈Â〉〈B̂〉. Eq. (16) indicates that 〈x̂〉 and 〈p̂〉 evolve the
same way as a harmonic oscillator with angular frequency
ωCM — any semiclassical measurement of on 〈x̂〉 and
〈p̂〉 will confirm classical physics. On the other hand,
evolution of second moments (which represent quantum
uncertainty), is modified to that of a harmonic oscillator
with a different frequency (see Fig. 1):

ωq ≡
√
ω2
CM + ω2

SN . (19)

Equations (16)–(18) for Gaussian states can also be re-
produced by a set of effective Heisenberg equations that
contain expectation values:

˙̂x = p̂/M , ˙̂p =−Mω2
CMx̂− C(x̂− 〈x̂〉) . (20)

Classical gravity introduces a C-dependent term to
Eq. (20), in a way that only affects quantum uncertainty.

The most obvious test for the SN effect is to prepare a
mechanical oscillator into a squeezed initial state, let it
evolve for a duration τ , and carry out state tomography.
We need to detect an extra phase ∆θ = ωCMτ(ω2

SN/ω
2
CM)

in the rotation of the quantum uncertainty ellipse. This
seems rather difficult because ωSN/ωCM is often a very
small number, yet ωCMτ is often not large, either.

However, we have not taken advantage of the fact that
∆θ is deterministic and repeatable. One way of doing so
is to carry out a frequency-domain experiment. Suppose
we use light (at ω0) to continuously probe a mechanical
object’s position, with quantum back-action noise (in the
form of radiation-pressure noise) comparable in level to
thermal noise, as has been achieved by Purdy et al. [33].
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The effective Heisenberg equations (valid for Gaussian
states) for such an optomechanical device is given by:

˙̂x =p̂/M , (21)

˙̂p =−Mω2
CMx̂− 2γmp̂− C(x̂− 〈x̂〉) + F̂BA + Fth (22)

b̂2 =â2 + nx + (α/~)x̂ , b̂1 = â1 . (23)

Here γm is the damping rate, α the optomechanical cou-
pling constant and, F̂BA ≡ α â1 the quantum back action,
and Fth the classical driving force (e.g., due to thermal
noise). â1,2 represent quadratures of the in-going opti-

cal field, and b̂1,2 those of the out-going field. (They
correspond to amplitude and phase modulations of the
carrier field at ω0.) We have used nx to denote sensing
noise. As we show in the Supplementary Material [40],

the out-going quadrature b̂2 contains two prominent fre-
quency contents, peaked at ωCM (due to classical motion
driven by thermal forces) and at ωq (due to quantum
motion driven by quantum fluctuation of light), respec-
tively. Both have the same width (γm), and height (if
thermal and back-action noises are comparable). In or-
der to distinguish them, we require

SFth
≈ SFBA , Q >∼ (ωCM/ωSN)2 (24)

This indicates a SN-induced shift of ∆θ ≈ 2π/Q per cycle
can be picked up by the frequency domain experiment,
even in presence of classical thermal noise Fth.

For Si oscillators with ωSN ≈ 0.036 s−1, if ωCM ≈ 2π×
10 Hz, Eq. (24) requires Q >∼ 3×106, which is challenging
but possible [41]. If a lower-frequency oscillator, e.g., a
torsional pendulum with ωCM ≈ 2π × 0.1 Hz [48] can be
probed with back-action noise above thermal noise, then
we only require Q >∼ 3× 102.
SN equation for two macroscopic objects.— Now suppose
we have two objects confined within potential wells fre-
quencies ω1,2, and moving along the same direction as
the separation vector L connecting their equilibrium po-
sitions (from 1 to 2). The standard approach for describ-
ing this interaction is to add a potential

Vg = E ′12
[
x
(1)
CM − x

(2)
CM

]
+ (C12/2)

[
x
(1)
CM − x

(2)
CM

]2
(25)

into the Schrödinger equation, with

E12≡−
∫
d3xd3y

Gρ̃
(1)
tot(x)ρ̃

(2)
tot(y)

|L + y − x|
, C12 ≡

∂2E12
∂L2

, (26)

with ρ̃
(1)
tot and ρ̃

(2)
tot the mass densities of objects 1 and

2, respectively. As has been argued by Feynman, this
way of including gravity tacitly assumes that gravity is
quantum. Although quantum operators have not been
assigned for the gravitational field, they can be viewed
as have been adiabatically eliminated due to their fast re-
sponse: quantum information can transfer between these
objects via gravity. Suppose ω1 = ω2 = ω, then Vg mod-
ifies the frequency of the two objects’ differential mode

— allowing quantum state to slosh between them, at a
frequency of ∆ = |ω+ − ω−| = C12/(2Mω).

Suppose we instead use the SN equation for the two
macroscopic objects. In addition to modifying each ob-
ject’s own motion, we add a mutual term of

VSN =E ′12
[
x
(1)
CM − x

(2)
CM

]
+
C12
2

[(
x
(1)
CM − 〈x

(2)
CM〉

)2
+
(
x
(2)
CM − 〈x

(1)
CM〉

)2]
. (27)

This VSN makes sure that only 〈xCM〉 gets transferred
between the two objects the same way as in classical
physics: quantum uncertainty does not transfer from one
object to the other. To see this more explicitly for Gaus-
sian states, we can write down the full set of effective
Heisenberg equations governing these two CMs:

˙̂xj =p̂j/Mj ,

˙̂pj =−Mjω
2
CMx̂j −

∑
k,j

[
E ′kj + Ckj (x̂j − 〈x̂k〉)

]
. (28)

It is clear that expectation values follow classical physics,
and quantum uncertainties are confined within each ob-
ject — and evolve with a shifted frequency. Although
we have shown theoretically that the inability of trans-
ferring quantum uncertainty and the shift between ωCM

and ωq share the same origin, in practice, observing the
frequency shift for a single object will be much easier,
because C12 ∼ GM2/L3 <∼ GMρ0 � C11, C22, due to the
lack of the amplification factor Λ in C12 [cf. Eq. (15)].
Discussions— The lack of experimental tests on the
quantum coherence of dynamical gravity makes us be-
lieve that semiclassical gravity is still worth testing [18].
Our calculations have shown that signatures of classical
gravity in macroscopic quantum mechanics, although ex-
tremely weak, can be detectable with current technol-
ogy. In particular, the classical self gravity of a sin-
gle macroscopic object causes a much stronger signature
than the classical mutual gravity between two separate
objects: simply because the mass of a cold crystal is con-
centrated near lattice sites. We also speculate that the
rate of gravity decoherence should also be expedited by
Λ1/2 ∼ 100 — if it is indeed determined by gravitational
self energy [5, 6]. However, due to the lack of a widely-
accepted microscopic model for gravity decoherence, this
only makes it more hopeful for experimental attempts,
but would not enforce a powerful bound if decoherence
were not to be found.

Finally, since classical gravity requires the existence
of a global wave function of the universe that does not
collapse, (the unlikely case of) a positive experimental
result will open up new opportunities of investigating the
nature of quantum measurement.
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