This is the accepted manuscript made available via CHORUS. The article has been published as:

Causal Entropic Forces
A. D. Wissner-Gross and C. E. Freer
Phys. Rev. Lett. 110, 168702 — Published 19 April 2013
DOI: 10.1103/PhysRevLett.110.168702
Causal Entropic Forces

A. D. Wissner-Gross\textsuperscript{1,2,}\textsuperscript{†} and C. E. Freer\textsuperscript{3}

\textsuperscript{1}Institute for Applied Computational Science, Harvard University, Cambridge, Massachusetts 02138, USA
\textsuperscript{2}The Media Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
\textsuperscript{3}Department of Mathematics, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA

Recent advances in fields ranging from cosmology to computer science have hinted at a possible deep connection between intelligence and entropy maximization. In cosmology, the causal entropic principle for anthropic selection has used the maximization of entropy production in causally connected space-time regions as a thermodynamic proxy for intelligent observer concentrations in the prediction of cosmological parameters [1]. In geoscience, entropy production maximization has been proposed as a unifying principle for non-equilibrium processes underlying planetary development and the emergence of life [2–4]. In computer science, maximum entropy methods have been used for inference in situations with dynamically revealed information [5], and strategy algorithms have even started to beat human opponents for the first time at historically challenging high look-ahead depth and branching factor games like Go by maximizing accessible future game states [6]. However, despite these insights, no formal physical relationship between intelligence and entropy maximization has yet been established. Here, we explicitly propose a first step toward such a relationship in the form of a causal generalization of entropic forces that we find can cause two defining behaviors of the human “cognitive niche” – tool use and social cooperation – to spontaneously emerge in simple physical systems. Our results suggest a potentially general thermodynamic model of adaptive behavior as a non-equilibrium process in open systems.

PACS numbers: 05.70.-a, 05.65.+b, 45.10.Db, 45.40.Ln, 45.80.+r , 05.10.Ln, 05.40.-a, 07.05.Mh

Recent advances in fields ranging from cosmology to computer science have hinted at a possible deep connection between intelligence and entropy maximization. In cosmology, the causal entropic principle for anthropic selection has used the maximization of entropy production in causally connected space-time regions as a thermodynamic proxy for intelligent observer concentrations in the prediction of cosmological parameters [1]. In geoscience, entropy production maximization has been proposed as a unifying principle for non-equilibrium processes underlying planetary development and the emergence of life [2–4]. In computer science, maximum entropy methods have been used for inference in situations with dynamically revealed information [5], and strategy algorithms have even started to beat human opponents for the first time at historically challenging high look-ahead depth and branching factor games like Go by maximizing accessible future game states [6]. However, despite these insights, no formal physical relationship between intelligence and entropy maximization has yet been established. Here, we explicitly propose a first step toward such a relationship in the form of a causal generalization of entropic forces that we find can spontaneously induce remarkably sophisticated behaviors associated with the human “cognitive niche,” including tool use and social cooperation, in simple physical systems. Our results suggest a potentially general thermodynamic model of adaptive behavior as a non-equilibrium process in open systems.

A non-equilibrium physical system’s bias towards maximum instantaneous entropy production [3] is reflected by its evolution toward higher-entropy macroscopic states [7], a process characterized by the formalism of entropic forces [8]. In the canonical ensemble, the entropic force $\mathbf{F}$ associated with a macrostate partition, $\{\mathbf{X}\}$, is given by

$$\mathbf{F}(\mathbf{X}_0) = T \nabla_{\mathbf{X}} S(\mathbf{X})|_{\mathbf{X}_0},$$

(1)

where $T$ is the reservoir temperature, $S(\mathbf{X})$ is the entropy associated with macrostate $\mathbf{X}$, and $\mathbf{X}_0$ is the present macrostate.

Inspired by recent developments [1–6] to naturally generalize such biases so that they uniformly maximize entropy production between the present and a future time horizon, rather than just greedily maximizing instantaneous entropy production, we can also contemplate generalized entropic forces over paths through configuration space rather than just over the configuration space itself. In particular, we can promote microstates from instantaneous configurations to fixed-duration paths through configuration space while still partitioning such microstates into macrostates according to the initial coordinate of each path. More formally, for any open thermodynamic system, we can treat the phase-space paths taken by the system $\mathbf{x}(t)$ over the time interval $0 \leq t \leq \tau$ as microstates and partition them into macrostates $\{\mathbf{X}\}$ according to the equivalence relation $\mathbf{x}(t) \sim \mathbf{x}'(t)$ iff $\mathbf{x}(0) = \mathbf{x}'(0)$, thereby identifying every macrostate $\mathbf{X}$ with a unique present system state $\mathbf{x}(0)$, as schematically illustrated in Fig. 1(a). We can then define the causal path entropy $S_c$ of a macrostate $\mathbf{X}$ with associated present state $\mathbf{x}(0)$ as the path integral

$$S_c(\mathbf{X}, \tau) = -k_B \int_{\mathbf{x}(0)} \Pr(\mathbf{x}(t)|\mathbf{x}(0)) \ln \Pr(\mathbf{x}(t)|\mathbf{x}(0)) \, d\mathbf{x}(t),$$

(2)

where $\Pr(\mathbf{x}(t)|\mathbf{x}(0))$ denotes the conditional probability of the system evolving through the path $\mathbf{x}(t)$ assuming the initial system state $\mathbf{x}(0)$, integrating over all possible paths $\mathbf{x}'(t)$ taken by the open system’s environment during the same interval:

$$\Pr(\mathbf{x}(t)|\mathbf{x}(0)) = \int_{\mathbf{x}'(t)} \Pr(\mathbf{x}(t), \mathbf{x}'(t)|\mathbf{x}(0)) \, d\mathbf{x}'(t).$$

(3)

Our proposed causal path entropy measure [2] can be seen as a special form of path information entropy – a more general measure that was originally proposed in the context of stationary states and the fluctuation theorem [9] – in which macrostate variables are restricted to the initial states of path microstates (hence, each path microstate can be seen as a “causal” consequence of the macrostate to which it belongs). In contrast, path information entropy by definition imposes no such causal macrostate restriction and allows temporally delocalized macrostate variables such as time-averaged quantities over paths [10]. By restricting the macrostate variables to the present ($t = 0$) state of the microscopic degrees of freedom, a causal entropy gradient force can always be defined that can be treated as a real microscopic force that acts directly on those degrees of freedom and that can prescribe well-defined flows in system state space. Again, in contrast, gradients of
path information entropy can only generically be interpreted as phenomenological forces that describe a system’s macroscopic dynamics. The generic limitation of path information entropy to serving as a macroscopic description, rather than a microscopic physical prescription, for dynamics was noted recently.\(^3\)

A path-based causal entropic force \(F\) corresponding to \(I\), as schematically illustrated in Fig. 1(b), may then be expressed as

\[
F(X_0, \tau) = T_c \nabla \mathcal{S}_c(X, \tau)|_{X_0},
\]

where \(T_c\) is a causal path temperature that parameterizes the system’s bias toward macrostates that maximize causal entropy. Alternatively, \(T_c\) can be interpreted as parameterizing the rate at which paths in a hypothetical dynamical ensemble of all possible fixed-duration paths transition into each other, in analogy to the transitions between configurational microstates of an ideal chain responsible for its entropic elasticity. Note that the force \(I\) is completely determined by only two free parameters, \(T_c\) and \(\tau\), and vanishes in three degenerate limits: (i) in systems with translationally symmetric dynamics; (ii) as \(\tau \to 0\); and (iii) if the system and its environment are deterministic.

For concreteness, we will now explore the effect of selectively applying causal entropic force to the positions of one or more degrees of freedom of a classical mechanical system. Working with a bounded allowed region in unbounded classical phase space to break translational symmetry, we will denote system paths through position-momentum phase space as \(x(t) = (q(t), p(t))\) and denote the forced degrees of freedom by \(j\), with effective masses \(m_j\). As a simple means for introducing nondeterminism, let us choose the environment \(x(t)\) to be a heat reservoir at temperature \(T_r\) that is coupled only to the system’s forced degrees of freedom, and that periodically with timescale \(\epsilon\) rethermalizes those degrees of freedom via nonlinear Langevin dynamics with temporally discretized additive thermal noise and friction terms. Specifically, let us assume the overall energetic force on the forced degrees of freedom to be

\[
g_j(x(t), t) = -p_j(\langle t/\epsilon \rangle) / \epsilon + f_j(\langle t/\epsilon \rangle) + h_j(x(t)),
\]

where \(h_j(x(t))\) collects any deterministic state-dependent internal system forces and \(f_j(t)\) is a piecewise-constant random Gaussian force with mean \(\langle f_j(t) \rangle = 0\) and correlation function \(\langle f_j(t)f_j(t') \rangle = m_j k_B T_r \delta_{jj} \delta(\langle t/\epsilon \rangle - \langle t'/\epsilon \rangle) / \epsilon^2\).

Under these assumptions, the components of the causal entropic force \(I\) at macrostate \(X_0\) with associated initial system state \((q(0), p(0))\) can be expressed as

\[
F_j(X_0, \tau) = T_c \frac{\partial \mathcal{S}_c(X, \tau)}{\partial q_j(0)} |_{x=X_0}
\]

for the positions of the forced degrees of freedom. Since paths that run outside the allowed phase space region have probability zero, \(\int_{-\infty}^{\infty} \frac{\partial \mathcal{P}(x(t)|x(0))}{\partial q_j(0)} dq_j(0) = 0\), so bringing the partial derivative from (5) inside the path integral in (2) yields

\[
F_j(X_0, \tau) = -k_B T_c \int_{x(0)} \frac{\partial \mathcal{P}(x(t)|x(0))}{\partial q_j(0)} \ln \mathcal{P}(x(t)|x(0)) Dx(t).
\]

Since the system is deterministic within each period \([n\epsilon, (n + 1)\epsilon)\), we can express any nonzero conditional path probability \(\mathcal{P}(x(t)|x(0))\) as the first-order Markov chain

\[
\mathcal{P}(x(t)|x(0)) = \prod_{n=1}^{N-1} \mathcal{P}(x(t_{n+1})|x(t_n)) \mathcal{P}(x(e)|x(0)),
\]

where \(t_n \equiv n\epsilon\) and \(N \equiv \tau/\epsilon\), and therefore

\[
\frac{\partial \mathcal{P}(x(t)|x(0))}{\partial q_j(0)} = \frac{\prod_{n=1}^{N-1} \mathcal{P}(x(t_{n+1})|x(t_n))}{\partial q_j(0)} \frac{\partial \mathcal{P}(x(e)|x(0))}{\partial q_j(0)}.
\]

Choosing \(\epsilon\) to be much faster than local position-dependent \((\epsilon \ll (2m_j\nabla q_{0j} h_j(x(0))^2)^{-1/2})\) and momentum-dependent \((\epsilon \ll (\nabla p_{0j} h_j(x(0)))^{-1})\) variation in internal system forces, the position \(q_j(\epsilon)\) is given by

\[
q_j(\epsilon) = q_j(0) + \frac{p_j(0)}{2m_j} \epsilon + \frac{f_j(0) + h_j(0)}{2m_j} \epsilon^2.
\]

It follows from (9) that \(q_j(\epsilon) - q_j(\epsilon') = f_j(0) \epsilon^2 / (2m_j)\) and \((q_j^2(\epsilon) - q_j^2(\epsilon')) = k_B T\epsilon^2 / (4m_j)\), and since the distribution \(\mathcal{P}(x(e)|x(0))\) is Gaussian in \(q_j(\epsilon)\), we can therefore write

\[
\frac{\partial \mathcal{P}(x(e)|x(0))}{\partial q_j(0)} = \frac{\partial \mathcal{P}(x(e)|x(0))}{\partial q_j(0)} = \frac{2f_j(0)}{k_B T_r} \mathcal{P}(x(e)|x(0)).
\]

Finally, substituting (10) into (8), and (8) into (6), we find that

\[
F_j(X_0, \tau) = -\frac{2T_c}{T_r} \int_{x(0)} f_j(0) \mathcal{P}(x(t)|x(0)) \ln \mathcal{P}(x(t)|x(0)) Dx(t).
\]

Qualitatively, the effect of \(I\) can be seen as driving the forced degrees of freedom \(j\) with a temperature-dependent strength \((T_c/T_r)\) in an average of short-term directions \((f_j(0))\) weighted by the diversity of long-term paths \((-\ln \mathcal{P}(x(t)|x(0))\ln \mathcal{P}(x(t)|x(0)))\) that they make reachable, where path diversity is measured over all degrees of freedom of the system, and not just the forced ones.
To better understand this classical-thermal form (11) of causal entropic forcing, we simulated its effect (12, 13) on the evolution of the causal macrostates of a variety of simple mechanical systems: (i) a particle in a box, (ii) a cart and pole system, (iii) a tool use puzzle, and (iv) a social cooperation puzzle. The first two systems were selected for illustrative purposes. The latter two systems were selected because they isolate major behavioral capabilities associated with the human “cognitive niche” [14]. The widely-cited cognitive niche theory proposes that the unique combination of “cognitive” adaptive behavioral traits that are hyperdeveloped in humans with respect to other animals have evolved in order to facilitate competitive adaptation on faster time scales than natural evolution [15].

As a first example of causal entropic forcing applied to a mechanical system, we considered a particle in a two-dimensional box [13]. We found that applying forcing to both of the particle’s momentum degrees of freedom had the effect of pushing the particle toward the center of the box, as shown in Fig. 2(a) and Supplemental Movie 1 [13]. Heuristically, as the overall farthest position from boundaries, the central position maximized the diversity of causal paths accessible by Brownian motion within the box. In contrast, if the particle had merely diffused from its given initial state, while its expectation position would relax toward the center of the box, its maximum likelihood position would remain stationary.

As a second example, we considered a cart and pole (or inverted pendulum) system [13]. The upright stabilization of a pole by a mobile cart serves as a standard model for bipedal locomotion [16, 17], an important feature of the evolutionary divergence of hominids from apes [15] that may have been responsible for freeing up prehensile hands for tool use [14]. We found that causal entropic forcing of the cart resulted in the successful swing-up and upright stabilization of an initially downward-hanging pole, as shown in Fig. 2(b) and Supplemental Movie 2 [13]. During upright stabilization, the angular variation of the pole was reminiscent of the correlated random walks observed in human postural sway [18]. Heuristically, again, swinging up and stabilizing the pole made it more energetically favorable for the cart to subsequently swing the pole to any other angle, hence maximizing the diversity of causally accessible paths. Similarly, while allowing the pole to circle around erratically instead of remaining upright might make diverse pole angles causally accessible, it would limit the diversity of causally accessible pole angular momenta due to its directional bias. This result advances beyond previous evidence that instantaneous noise can help to stabilize an inverted pendulum [19, 20] by effectively showing how potential future noise can not only stabilize an inverted pendulum but can also swing it up from a downward hanging position.

As a third example, we considered a tool use puzzle [13] based on previous experiments designed to isolate tool use abilities in non-human animals such as chimpanzees [21] and crows [22], in which inanimate objects are used as tools to manipulate other objects in confined spaces that are not directly accessible. We modeled an animal as a disc (Disc I) undergoing causal entropic forcing, a potential tool as a smaller disc (Disc II) outside of a tube too narrow for Disc I to enter, and an object of interest as a second smaller disc (Disc III) resting inside the tube, as shown in Fig. 3(a) and Supplemental Movie 3 [13]. We found that Disc I spontaneously collided with Disc II (Fig. 3(b)), so as to cause Disc II to then collide with Disc III inside the tube (Fig. 3(c)), successfully releasing Disc III from its initially fixed position and making its degrees of freedom accessible for direct manipulation and even a sort of “play” by Disc I (Fig. 3(d)).

As a fourth example, we considered a social cooperation puzzle [13] based on previous experiments designed to isolate social cooperation abilities in non-human animals such as chimpanzees [23], rooks [24], and elephants [25], in which a pair of animals cooperate to perform synchronized pulling on both ends of a rope or string in order to retrieve an object from an inaccessible region. We modeled a pair of animals as...
two discs (Discs I and II) undergoing independent causal entropic forcing and residing in separate compartments, which they initially shared with a pair of lightweight “handle” discs that were connected by a string, as shown in Fig. 4(a) and Supplemental Movie 4 [13]. The string was wound around a horizontal bar free to move vertically and supporting a target object (Disc III), which could move horizontally on it and which was initially inaccessible to Discs I and II. Disc masses and drag forces were chosen such that synchronized pulling on both ends of the string resulted in a much larger downward force on Disc III than asynchronous or single-sided pulling. Moreover, the initial positions of Discs I and II were set asymmetrically such that coordinated timing of the onset of pushing down on handle discs was required in order for the string not to be pulled away from either Disc I or II. We found that independent causal entropic forcing of Discs I and II caused them to first spontaneously align their positions and push down in tandem on both string handles. As a result, Disc III was successfully pulled to an accessible position for direct manipulation. (d) Discs I and II directly manipulate Disc III. (See also Supplemental Movie 4 [13].)

These results have broad physical relevance. In condensed matter physics, our results suggest a novel means for driving physical systems toward self-organized criticality [27]. In particle theory, they suggest a natural generalization of entropic gravity [8]. In econophysics, they suggest a novel physical definition for wealth based on causal entropy [28, 29]. In cosmology, they suggest a path entropy-based refinement to current horizon entropy-based anthropic selection principles that might better cope with black hole horizons [11]. Finally, in biophysics, they suggest new physical measures for the behavioral adaptiveness and sophistication of systems ranging from biomolecular configurations to planetary ecosystems [2, 3].

In conclusion, we have explicitly proposed a novel physical connection between adaptive behavior and entropy maximization, based on a causal generalization of entropic forces. We have examined in detail the effect of such causal entropic forces for the general case of a classical mechanical system partially connected to a heat reservoir, and for the specific cases of a variety of simple example systems. We found that some of these systems exhibited sophisticated spontaneous behaviors associated with the human “cognitive niche,” including tool use and social cooperation, suggesting a potentially general thermodynamic model of adaptive behavior as a non-equilibrium process in open systems.

We thank E. Kaxiras, J. Gore, J. A. Barandes, M. Tegmark, E. S. Boyden, T. Hylton, L. Lerman, J. M. Smart, Z. D. Wissner-Gross, and T. M. Sullivan for helpful discussions. C.E.F. was partially supported by NSF Grant No. DMS-0901020.
To whom correspondence should be addressed: alexwg@post.harvard.edu; http://www.alexwg.org

Present address: Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

[12] Our general-purpose causal entropic force simulation software will be made available for exploration at http://www.causalentropy.org