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An ab initio method is presented to calculate shallow impurity levels in bulk 

semiconductors. This method combines the GW calculation for the treatment of the 

central-cell potential with a potential patching method for large systems (with 64,000 

atoms) to describe the impurity state wave functions. The calculated acceptor levels in Si, 

GaAs and an isovalent bound state of GaP are in excellent agreement with experiments 

with a root-mean-square error of 8.4 meV.   

 

                                 PACS numbers: xxx 

Semiconductors are useful because their electrical properties can be controlled by intentional doping. 

While there are deep impurity levels in semiconductors, it is the shallow ones that are most useful for 

making them n-type or p-type [1] and are also responsible for the rich fine optical spectroscopy that 

often eludes explanations [2, 3]. Presently, there are ways to calculate deep level energies based on ab 

initio total energy calculations with an accuracy of about 0.2 eV [4-8]. Unfortunately, that is not 

adequate for shallow impurities because their binding energies are smaller than this threshold. Besides, 

calculating shallow impurities by such methods would require the total energy calculations of supercells 

with tens of thousands of atoms [9], which is beyond the current capability. There are hydrogen model 

treatments of shallow donor and acceptor levels, with either simple effective mass or the k.p method [10, 

11]. The resulting binding energies for such methods are independent of the chemistry of the impurity 

element; but, in reality, the impurity level changes dramatically depending on the impurity element (e.g., 

from 45.8 meV for Si:B to 247.7 meV for Si:Tl) [12]. This chemical dependence is called the central-

cell potential correction, and it has been intensely studied in the 1970s and 1980s [13]. In the simplest 

picture, this correction can be considered as an additional local potential near the impurity. Phillips has 

analyzed such central-cell corrections in terms of the atomic elastic potential and chemical potential [14-

16]. Other theoretical approaches, including Green’s function methods, have been developed to treat the 

central-cell potential and impurity level calculations [17-20]. However, self-consistent calculations are 
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difficult to obtain, and sometimes fitting parameters are used to represent the central-cell potential, 

defying the purpose of predicting the binding energies. Thus, to date, accurate ab initio predictions have 

not been practically attainable. In this paper we present an approach that can accurately predict the 

binding energies of shallow acceptor levels with a root-mean-square error of 8.4 meV for the systems 

we tested. This approach combines two techniques, one allowing the calculations of large systems, 

another providing an accurate central-cell potential using the GW method. Here we focus on acceptor 

levels since they tend to have larger elemental dependencies. 

One of us has previously developed a method for using the local density approximation (LDA) of the 

density functional theory (DFT) to calculate the central-cell potential and to apply it directly to a shallow 

impurity level calculation with 64,000 atoms [21]. While it was found that the LDA single-particle 

Hamiltonian provided the correct trend, it could not yield accurate binding energies [21]. This approach 

should be able to yield the elastic contribution to the central-cell potential accurately. It thus raises the 

question of whether the LDA is accurate enough for the chemical contribution. This reminds us of the 

LDA band alignments problem [22-24]. A more accurate approach is to use the many-body perturbation 

GW method, which has been demonstrated to provide better band alignments [22-25] and can also be 

helpful in direct deep impurity level calculations [26]. Here we present an approach that includes the 

GW effects in shallow impurity calculations. 

There are two approaches for calculating the binding energy of an impurity state. One is from the total 

energy point of view, calculating it as the total energy difference between the E(N) and E(N-1) systems 

(the energy needed to remove one electron from the impurity to the bulk). This is used for deep level 

calculations [4, 5, 7]. The second approach is to calculate the eigen-energy of the GW equation (which is 

equivalent to the total energy difference between the N and N-1 systems [27]). The GW equation can be 

written as: 

 

                                                             (1) 

 

Here  is the local potential consisting of the ionic potential and 

Hartree potential calculated from the electron charge density , and  is the nonlocal self-

energy term. The top of the valence band eigen-energy  of the impurity system, when compared with 

the bulk value, will give us the impurity binding energy. However, it is presently computationally 
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impractical to simulate the entire system using the GW method. We therefore seek appropriate 

approximations in order to solve Eq. (1). There are many versions of self-consistency for GW 

calculations [25, 28, 29]. We use a version where will be taken from the LDA without further 

updating. This procedure has been shown to be adequate in band offset studies [22, 24]. As a result, the 

local potential  in Eq. (1) will be the same as that in the LDA Kohn-Sham (KS) equation, while the 

LDA exchange and correlation potential  is replaced by . The goal is to use a modified 

potential to approximate the effects of . We further choose the G0W0 approximation for GW 

calculations [25, 28, 29], although our procedure works for any GW approach that does not update .  

We first consider a large supercell with N electrons. After p-type doping, the neutral system has N-1 

electrons. One immediate question is: Should one use N or N-1 electrons for Eq. (1)? For an exact 

quasiparticle equation, the resulting is independent of choosing N or N-1 (e.g., the total energy curve 

E(n) for n between N-1 and N is a straight line) [30]. This holds approximately for the GW equation [31, 

32]. However, the KS eigen-energy  calculated from LDA depends sensitively on the total number of 

electrons (partly due to the erroneous self-interactions [33]). One important fact is that for a closed shell 

system, where there is a relatively large gap between the highest occupied state and lowest unoccupied 

state, the GW self-energy  is short ranged in regard to , typically within a distance of 5Å 

[34, 35]. As a result, we can perform small-system GW calculations and approximate the effects of  by 

some simplified short-range nonlocal potential terms. Thus, we will choose the closed-shell N electron 

system. In the following paragraphs, we describe how to approximate Eq. (1) in different regions of the 

impurity system.  

The N electron system is –1 charged. As a result, the V(r) will have a  long-range potential tail 

where  is the dielectric constant of the system. Thus, for a position  far from the impurity, the 

potential part of the Hamiltonian (for the top of the valence band) can be approximated as:  

 

                              (2) 

 

The bulk part, , is short ranged (for ) and periodic. Its effects can be represented by 

the LDA potential  with a correction term. In a plane wave pseudopotential calculation, each atom 

will have s, p, d nonlocal pseudopotentials (for clarity, we have ignored them in Eqs. (1) and (2)). We 

have adjusted the s nonlocal pseudopotentials to reproduce the bulk GW effective masses (which have a 
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large influence on the impurity binding energies), while keeping the LDA bulk valence band maximum 

(VBM) energies unchanged. In Table S.I of the supplementary material [36] we list the valence band 

effective masses obtained after the bulk correction for GaAs. For the indirect bandgap systems Si and 

GaP (Table S.I), the LDA effective masses without correction are already adequate. In Table S.I we 

have used experimental effective masses as our references, which are close to GW effective masses that 

we calculated. We call the resulting potential (with the readjusted atomic nonlocal part) .  

Now, for  close to the impurity, the situation is more complicated. As analyzed by Phillips [14, 15], 

there are two contributions to the central-cell potential. The first is the elastic atomic relaxation and the 

related potential change near the impurity [14]. This will be treated with LDA calculations. The second 

is the difference between the electronic structure of the impurity relative and its host [15]. This will be 

treated with GW calculations. The elastic strain due to a central impurity atom decays as [37]. As a 

result, the atomic displacement becomes very small beyond a supercell size of about 512 atoms (see 

supplementary material [36]). Thus, a 512-atom supercell is relaxed using the plane wave 

pseudopotential DFT method (with the VASP code [38-43]). N=2048 valence electrons are used (the 

Si:X and GaAs:X systems are –1 charged). The resulting potential  can be used to construct the 

potential inside the region of the 512-atom box ( ), while Eq. (2) is used outside the region. However, 

 cannot be connected with Eq. (2) directly for Si:X and GaAs:X, since the as-calculated  from 

the –1 charged periodic supercell includes the  image potential from the neighboring imaging 

charges. This image potential can be expressed as: 

 

                                                                                  (3) 

 

Here, L is the size of the 512-atom supercell. This function can be calculated numerically using FFTs, in 

a similar way to the evaluation of  Ewald energies [44]. Now for  : 
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modified s nonlocal potential (e.g., in GaAs) from the bulk fitting is used for host atoms both inside and 

outside . The  is the static dielectric constant which can either be calculated using LDA with a slab 

technique [45] (which gives the same result as the perturbation theory and allows the calculation of ionic 

contribution), or directly taken from experimental value to avoid LDA error [36]. Note that  based on the 

symmetry, beyond the spherical term, the potential tail can have a higher order octopole moment 

term, which decays as 81/ r . The fact that the potential inside and outside  can match at the boundary 

with only a 3 meV error, using only the spherical potentials, indicates that such a high-order effect is 

rather small beyond [21]. 

We have used this approach to construct a large supercell containing up to 64,000 atoms. The Nth 

eigen-state (top of the valence band) of this system can be calculated using the folded spectrum method 

(FSM) [46], which solves only a few eigen-states near a given reference energy  based on the 

equation . The state  is the impurity state, and its eigen-energy  

minus the bulk VBM energy  (using bulk ) gives us the impurity binding energy. We have 

found that the impurity state wave function  can indeed extend to many thousands of atoms [21], and 

the  change with supercell size is shown in Table I for the case of Si:In. All these findings indicate 

that the 64,000-atom cell is necessary, similar to the conclusion obtained from tight-binding calculations 

[9].  

As shown in the fourth column of Table II, the binding energies following the above procedure are not 

accurate enough. We thus turn to the second contribution of the central-cell potential, the electronic 

structure difference between the impurity atom and the host atoms and its GW treatment. So far, this 

difference is treated at the LDA level. We expect the difference between  and  to 

be localized near the impurity; thus, we can use a 64-atom cell to capture this difference. We have 

carried out GW calculations (using VASP) for 64-atom supercells with one impurity atom (with LDA 

relaxed atomic positions) using N=256 electrons (the system is –1 charged but with a closed shell).  

In order to generate a numerical Hamiltonian that is both compatible with the rest of the  

potential and also can be used to calculate the 64,000-atom system, we have used the following 

procedure to transfer the information in the 64-atom GW calculation to the large system calculation. 

Note that the GW Hamiltonian is obtained by replacing the LDA exchange correlation potential  

with the GW self-energy term  while keeping the local potential  of Eq. (1) the same as in 

LDA. This results in a well-defined eigen-energy shift of the 64-atom impurity system 
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 and also an eigen-energy shift of the bulk system . 

Since the bulk VBM energy has been kept fixed in our bulk LDA modification to get , in the 

current 64-atom LDA adjustment the overall shift for the (64)LDA
VBMε  should be  instead 

of . This assures that the alignment between the local impurity potential and the bulk potential is 

the same as in the GW calculations. The calculated and  are listed in Table S.II [36] for the 

systems studied here. We see that the resulting  varies from a few meV to 100 meV. Following in 

the same procedure as in bulk LDA modification, here we change the p nonlocal potentials for the atoms 

near the impurity to generate the  shift. There are, however, several choices for this fitting 

representing the range of the impurity nonlocal potential . We have tested three choices: (1) 

adjusting only the p nonlocal potentials on the impurity atom; (2) adjusting the p nonlocal potentials of 

the impurity atom and the four nearest neighbor atoms; and (3) adjusting the p nonlocal potentials of 

only the four nearest neighbor atoms. The fitting is done to generate the desired shift  of the 64-

atom supercell while using minimum changes of the p potentials (as presented in Table S.III [36]). We 

found that the final 64,000-atom VBM energy differs less than 1 meV among these three choices, 

indicating the insensitivity of our final results to the fitting procedure.  

Using the 64-atom supercell fitted nonlocal potentials for the impurity atom, the bulk fitted nonlocal 

potentials for the host atoms (only for GaAs in our cases), the patched LDA local potential of Eqs. (2) 

and (4), and the FSM [46], we can now calculate the VBM eigen-energies of the 64,000-atom systems. 

Spin-orbit couplings due to the core levels based on relativistic pseudopotentials are also included in the 

Hamiltonian. This is important for heavy atom impurities like Tl and Sn. We use LDA+GW to indicate 

our results. The binding energies for Si acceptors are listed in Table II. We see that the experimental 

binding energy varies from 45.8 meV to 247.7 meV from B to Tl impurities. Our calculated binding 

energy changes from 44 meV to 246 meV. 

In order to test our procedure for more ionic systems, we have also calculated the acceptor levels of 

GaAs. One choice is with a column IV element to replace As, such as GaAs:C, GaAs:Si, GaAs:Ge, and 

GaAs:Sn. Another choice is with a group II element to replace Ga, such as GaAs:Mg. The results are 

listed in Table III. 

Lastly, we have also tested one isovalent impurity level GaP:Bi. When one P is replaced by Bi, a 

single distinct bound level above the valence band is formed. This is special because the closed-shell N 

electron system is neutral, and there is no  tail on the potential. Thus, in the above procedure, the 

)64()64(64 LDA
VBM
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potential tail in Eq. (2) should not be added, and  need not to be subtracted in Eq. (4). In a way, the 

central-cell potential is solely responsible for the bound state. The calculated binding energy of 41 meV 

is in excellent agreement with the experimental measurement of 39.7 meV [47].  

The calculated binding energies are plotted in Fig. 1 against the experimental values. Our LDA+GW 

results fall close to the y=x line. Some of the computational details are presented in supplementary 

materials [36]. To show the difference between the current method and other theoretical approaches, we 

have also calculated the impurity binding energies using other methods and plotted them in Fig. 1. One 

approach is to follow the above procedure but without GW correction of the 64-atom calculations. They 

are denoted as the LDA(eigen) method. They are much smaller than the experimental results, indicating 

the inadequacy of using the LDA to describe the central-cell chemical potential. We have also used the 

LDA total energy approach to calculate the impurity binding energy. This is the total energy difference 

between the E(N) and E(N-1) compared with the bulk VBM eigen-energy, as is often done for deep 

level calculations [4-8]. We have strictly followed the procedures described in Ref. [5] and have used a 

512-atom supercell. The result is shown as LDA(Etot, 512) in Fig. 1. We see that the energy is far away 

from the experimental result. Furthermore, as the impurity wave function is much larger than the 512-

atom supercell [10], this procedure is not converged with respect to supercell size. This can be seen from 

the results LDA(Etot, infinite), which are based on the same total energy difference formalism [5] but 

are estimated (instead of directly calculated) from the 64,000-atom system impurity eigen-state 

calculations (as derived in Ref. [21]). The results are much smaller than the 512-atom results (LDA(Etot, 

512)). They are also much smaller than the 64,000-atom LDA results based on the eigen-energy 

(LDA(eigen)).  

 

imV
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Fig. 1. Calculated binding energies plotted against experimental binding energies. The solid line 
indicates perfect matching of theoretical results with experimental results. Our final results are 
LDA+GW.  

Finally, our procedure can be summarized as the following well-controlled and tested steps. (1) 

Correct the bulk LDA nonlocal potential to reproduce the GW or experimental effective masses. (2) Use 

a 512-atom supercell (with the impurity atom) LDA calculation to relax the atomic positions and 

generate an LDA local potential . (3) Using , subtract the image potential to generate the potential 

inside the 512-atom supercell, and match that to the outside potential (which equals the LDA bulk 

potential plus a  term). This will generate an LDA local potential  for a 64,000-atom 

supercell. (4) Carry out a 64-atom supercell (with the impurity atom) GW calculation and obtain its 

VBM eigen-energy shift relative to the LDA result. Fit the impurity atom nonlocal pseudopotentials in 

the LDA calculation to reproduce this VBM eigen-energy shift in the 64-atom cell. (5) Use the fitted 

nonlocal potentials from the bulk atom in (1), and the impurity atom in (4), and the obtained in 

(3), together with the FSM to solve for the VBM eigen-energy of the 64,000-atom system. The resulting 

eigen-energy minus the bulk VBM eigen-energy will be the impurity binding energy.  
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Table I. Si:In impurity eigen-energy convergence relative to bulk VBM with increasing supercell size L. 
* indicates the final binding energy extrapolated from that of the smaller sizes. This is for the 

LDA(eigen) calculation.  
 

Cell size L 4a 8a 16a 20a * 

Eim (meV) 188 110 92.3 91.7 91.6 
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Table II. Binding energies of shallow acceptor levels in Si from experimental measurement (Eb(exp)), 
calculated by hydrogen model (Eb(Hyd)), LDA eigen-energy method (Eb_LDA(eigen)), LDA total 
energy method with infinite supercell size (Eb_LDA(Etot, infinite)) and “LDA+GW” procedure 
(Eb(LDA+GW)) as described in the current paper. The unit of the energies is meV.  
  

Host: 
Imp 

Eb 
(exp) a 

Eb 
(Hyd) b 

Eb_LDA 
(eigen) c 

Eb_LDA(Etot, 
infinite)c 

Eb(LDA
+GW) 

Si: B 45.8 31.6 43 22 44 
Si: Al 70.4 31.6 57 27 62 
Si: Ga 74.2 31.6 59 28 71 
Si: In 157.0 31.6 92 39 139 
Si: Tl 247.7 31.6 112 50 246 

aReference [12]. 
bReferences [10, 11]. 
cReference [21]. 
 

Table III. Binding energies of shallow acceptors in GaP and GaAs from experimental measurement 
(Eb(exp)), calculated by “LDA+GW” procedure (Eb(LDA+GW)) and LDA total energy method with 
512-atom supercell (Eb_LDA(Etot, 512)). 
 

Host: Imp Eb (exp) Eb_LDA 
(Etot, 512) 

Eb 
(LDA+GW) 

GaP: Bi 39.7a -- 41 

GaAs: C 26.0b -- 31 

GaAs: Si 34.5b 56 34 

GaAs: Ge 40.4b 71 53 

GaAs: Sn 170.5b 98 160 

GaAs: Mg 28.4b 68 34 

aReference [47]. 
bReference [48]. 
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