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The elastic response of suspended NbSe3 nanowires is studied across the charge density wave
phase transition. The nanoscale dimensions of the resonator lead to a large resonant frequency (∼
10-100 MHz), bringing the excited phonon frequency in close proximity of the plasmon mode of the
electronic condensate - a parameter window not accessible in bulk systems. The interaction between
the phonon and plasmon modes strongly modifies the elastic properties at high frequencies. This is
manifested in the nanomechanics of the system as a sharp peak in the temperature dependence of
the elastic modulus (relative change of 12.8%) in the charge density wave phase.

Research on nanoelectromechanical systems (NEMS)
[1–5] has progressed a lot over the last decade, providing
a way to explore the elastic properties of nanoscale sys-
tems. However, the ability of NEMS to act as a probe
of the lattice dynamics of a correlated system has not
yet been widely recognized. This should be interesting
because the screening of charge by electrons strongly af-
fects the lattice stiffness in a metal. [6] NEMS fashioned
out of charge density wave (CDW) materials [7, 8] pro-
vide the right parameter window to combine the advan-
tages of a high mechanical resonant frequency (in the
MHz range) and an overlapping low frequency collective
plasmon mode. The CDW systems studied in our exper-
iment are nanowires of the quasi-one-dimensional mate-
rial NbSe3. Unlike bulk crystals, [9] the elastic modulus
of these high frequency nanomechanical resonators shows
an abrupt peak with the variation of temperature in the
CDW phase. Using a model of an incommensurate CDW
interacting with the ionic lattice, we attribute this sur-
prising behaviour to a mutual locking of the lattice and
the CDW. We discuss why this effect is visible only at
the nanoscale.

Crystals with a quasi-one-dimensional structure de-
velop a charge density wave phase [7, 8] at low tempera-
tures where the electron density assumes a periodic varia-
tion over space along with a distortion of the lattice. The
signatures of the new order parameter are observed in the
electronic properties [10, 11] and concomitant changes in
the elastic properties [9, 12–14] have been seen in macro-
scopic crystals. In recent years, electrical transport mea-
surements on NbSe3 nanowires have shown that the prop-
erties of the CDW phase are significantly different from
macroscopic samples. [15–17] The behaviour of elastic
properties of nanoscale CDW systems are yet to be in-
vestigated in detail. Some measurements on thin flakes
of the layered CDW material NbSe2 have been reported.
[18] But the quasi-two-dimensional CDW phenomenon
associated with this system is not well understood and
a coherent picture of the underlying physics is missing.

c

d

0.8

0.6

0.4

0.2R
e

si
st

a
n

ce
 (

kΩ
)

25015050

Temperature (K)2 µm

1 µm

DC Current (µA)

T
e

m
p

e
ra

tu
re

 (
K

)

-10 0 10

225

145

65

1

2

3

d
V

/d
I 
(k
Ω

)

3.5

1.0

d
V

/d
I 
(k
Ω

)

Tc2

Tc1

a

b

FIG. 1. (Color online) (a), (b) Scanning electron microscope
(SEM) images of suspended NbSe3 nanowires. (c) Four probe
measurement of resistance as a function of temperature for a
nanowire. (d) The CDW depins and participates in conduc-
tion under the application of a large electric field. This is
observed by ramping up the dc current through the device
and monitoring the differential resistance (dV/dI , where V is
the voltage drop across the device and I is the current flow-
ing through it). A lineplot at 46.8 K is shown (indicated by
dotted line). The sharp drop indicates the depinning of the
CDW. The threshold electric field for depinning is estimated
to be 11.4 V/cm. (Length of the nanowire = 3.1 µm.).

The CDW transition in the quasi-one-dimensional CDW
system NbSe3 involves the gapping of a large part of the
Fermi surface [10], leading to a very prominent influence
on its electrical transport properties. In this paper, we
will probe the influence of the CDW on the elastic mod-
ulus and mechanics of nanowires of NbSe3. The coherent
charge density wave has a considerable effective mass [19]
and combined with the large dielectric constant of NbSe3,
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[20] reduces the CDW plasmon frequency low enough to
leave its signature on nanomechanical measurements.

Resonator devices were fabricated on a degenerately
doped Si substrate (coated with a 300 nm dielectric
layer of SiO2). The nanowires were suspended in dou-
bly clamped geometry with metallic contacts at both
ends [21] (Figs. 1(a) and 1(b)). These were capacitively
driven and set into mechanical vibrations to determine
the resonant frequency. The change in elastic modulus
was determined by measuring the resonant frequency of
these devices across the charge density wave phase tran-
sition. Typically, the width of the contacted nanowires
are between 80-300 nm and the thickness is between 30-
100 nm. The length of the suspended part between the
contacts varies between 2-4 µm. The result of four-probe
measurement of the resistance (R) as a function of tem-
perature (T ) curve of one such nanowire is shown in Fig.
1(c). The unit cell of NbSe3 consists of three types of
molecular chains, two of which undergo a CDW transi-
tion. There are two CDW transitions observed in NbSe3
(marked Tc1 and Tc2 in Fig. 1(c)). [10]

Incommensurate CDWs (for which the CDW wave-
length is not an integral multiple of the lattice spacing)
[22] can slide in the presence of an electric field. The
CDW is usually pinned by impurities but beyond a cer-
tain critical electric field (or a dc current passing through
it), it depins and participates in electrical conduction.
[11, 23] Differential resistance measurements (Fig. 1(d))
on a nanowire device indicates the threshold electric field
(Eth) for de-pinning of the CDW to be 11.4 V/cm at 46.8
K. This is 3 orders of magnitude larger than macroscopic
crystals. [11] A high depinning field as compared to bulk
crystals has been reported to arise on the reduction of the
size of the crystal. [16, 24] The crossover lengthscale is
determined by the phase coherence length [24, 25] of the
CDW (∼ few micrometers). At low temperatures (below
40 K), the resistance measurement plot in Fig. 1(c) shows
metallic behaviour (resistance decreasing upon the reduc-
tion of temperature). However, this is not the case for all
our nanowires, and some of them show non-metallic [15]
behaviour at low temperatures (see Fig. S1 of Supple-
mental Material [21]). We now discuss the measurement
of elastic properties by measuring the resonant frequency
of suspended devices - the key aspect of our work.

The schematic diagram of our nanowire resonator de-
vice is shown in Fig. 2(a). A frequency-modulated volt-
age V FM

sd at frequency f , deviation f∆ and modulation
rate fr is applied at the source and a dc voltage V dc

g is
applied at the gate electrode. [26] (See Figs. S2 and
S3 of Supplemental Material and the associated discus-
sion about details of the measurement technique. [21])
V FM
sd (t) = V0cos(2πft+

f∆
fr

sin(2πfrt)), where t denotes
time and V0 is the amplitude of the ac signal. This pro-
duces a driving force on the nanowire and sets it into
oscillation at the same frequency f . The current through
the device has a low frequency component at frequency

fr (∼ few hundred Hz) which shows a sharp change when
the driving frequency f of V FM

sd matches the natural res-
onant frequency of the nanowire. This component, called
the mixing current Imix, is measured using a lock-in am-

plifier. Imix ∝ dG
dq

f
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, where G is the

conductance, q the capacitively induced charge, f0 the
natural resonant frequency of the beam andQ is the qual-
ity factor of resonance. At the resonant frequency, the
amplitude of mechanical oscillation is maximum which
leads to a sharp change of the mixing current. There-
fore, by monitoring the mixing current as a function of
frequency, we can determine the resonant frequency and
from this the elastic modulus is inferred. The natural
resonant frequency f0 of a beam depends upon the elas-

tic modulus E and strain η as f0 =
√

EI
ρS

( 1
2L

√

η S
I
+ 1

L2 ).

(L is the length of the suspended nanowire, I the inertia
moment, ρ the mass density and S is the cross-sectional
area. [27])

To measure the change of elastic modulus at the CDW
phase transition, the resonant frequency is determined
by sweeping the frequency of V FM

sd while measuring the
mixing current, and the system is slowly heated up across
the phase transition. The result from one device (Device
1) is shown in the colourscale plot of Imix in Fig. 2(b).
The positions of sharp change in Imix trace out the vari-
ation of resonant frequency. There is a prominent peak
(between 40-63 K) observed just below the Tc2 CDW
transition. Over the wide range of temperature from
10 K to 190 K, the resonant frequency has a general
trend of decreasing monotonically with increasing tem-
perature, except that there is the abrupt peak between
40-63K. The monotonically decreasing trend can be un-
derstood by considering the strain in the system. When
the device is fabricated at room temperature, strain in
the system should be small. On cooling it down, the
nanowire as well as the metal electrodes holding it con-
tract. This tends to pull the nanowire and increases the
strain and leads to higher resonant frequencies at low
temperature, the change being a gradual one. By a sim-
ilar argument, when the system is heated up starting at
10 K, the nanowire and the electrodes will expand, thus
reducing the strain and also the resonant frequency. This
explains the gradual decrease of resonant frequency with
increase in temperature. Now, in the region of the peak
(at 40 K), the resonant frequency goes up abruptly. This
can not be due to strain resulting from thermal expan-
sion, because as explained earlier, strain would reduce
with increasing temperature and will not lead to an in-
crease in f0. The quantity, a change in which can give
rise to the ‘peak’, is the elastic modulus. Considering
that f0 ∝

√
E, the height of the ‘peak’ corresponds to a

fractional change in elastic modulus of 12.8% (±0.9%).
This is an extremely large change. Comparison of the
data of Fig. 2(b) with elastic modulus data on macro-
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FIG. 2. (Color online) (a) Schematic diagram of the circuit
used for actuation and detection of mechanical resonance of a
suspended nanowire. (b) Mixing current as a function of driv-
ing frequency and temperature for Device 1 (V dc

g = -44 V).
There is a large peak in resonant frequency (and also in the
elastic modulus) below 60 K - where a charge density wave
transition takes place. (Inset: Lineplots of mixing current as a
function of driving frequency at three different temperatures.
The curves are plotted with an offset (along the ‘mixing cur-
rent’ axis) for clarity.) (c) Variation of resonant frequency
with temperature for Device 2 (V dc

g = -45 V).

scopic crystals yields a striking contrast. In the vibrating
reed experiments on bulk crystals by Brill et al., [9] there
was no detectable change in elastic modulus at the Tc2

CDW transition around 60 K. However, a ‘dip’ corre-
sponding to a 0.09% change in elastic modulus was seen
near the Tc1 transition at 142 K. We do not detect any
significant feature around the Tc1 transition. (Our de-
vices have Q∼300 and this may not be sufficient for de-
tecting the very small change in elastic modulus reported
by Brill et al. [9, 21]

Fig. 2(c) shows data from a second device (Device
2). Two resonant modes can be noticed in this plot.
Closely spaced modes arise in NEMS devices because of
small asymmetries in device geometry. [28] For the upper

mode, the signal of resonance becomes extremely faint as
the resonant frequency starts increasing sharply beyond
35 K and the ‘peak’ feature can not be traced (except for
two points on the right hand ‘slope’ of the peak indicated
by two arrows in the figure). However, the feature is clear
for the lower mode and it is estimated that the maximum
value of the ‘peak’ in resonant frequency corresponds to
a 16.2 % change in the elastic modulus. (Data from one
other device is presented in [21], Fig. S4. Measurements
carried out on a total of six devices showed similar qual-
itative features.)
One possible way in which the strain (and therefore

the resonant frequency) may be affected is the interaction
between the CDW and the lattice mediated by impurity
pinning effects and applied electric fields [14]. This re-
quires a detailed understanding of how the pinning con-
ditions vary with temperature and it is not clear that
such effects can explain the non-monotonic variation of
resonant frequency with temperature observed by us. A
more plausible picture is provided by taking into account
the dielectric properties of the CDW system. Phonons in
metals arise from a Bohm-Staver mechanism where the
restoring force for lattice displacements is provided by
screening effects of the electron gas. In a simple picture,
an one-dimensional lattice can be thought of as a chain
of masses connected by springs, each of stiffness Ks and
the stiffness scales inversely with the dielectric constant ǫ
(Ks ∝ 1

ǫ
). [6] In the case of the CDW system NbSe3, the

lattice also sees the potential due to the incommensurate
charge density wave. The potential energy of the lattice,

Φ =
∑

i

1

2
Ks(xi − xi−1 − l)2 + Γ(1− cos(2π

xi

λ
)) . (1)

Here, Γ is proportional to the amplitude (or the or-
der parameter) of the CDW, xi is the position of the ith

ion, l is the equilibrium separation between the ions and
λ is the wavelength of the CDW. (See Fig. 3 (a) for a
sketch of the model.) This is known in literature as the
Frenkel-Kontorova model. [29] In order to evaluate the
resonant frequency, one needs to estimate the phonon
modes. It had been shown by numerical computations
[29] that when the ratio Γ

Ks
exceeds a critical value, a

‘phonon gap’ opens up, shifting the acoustic phonon fre-
quencies to larger values. Physically, the absence of low
frequency modes at long wavelengths originates in the
pinning of the lattice ions to the CDW potential. When
the CDW potential is weak, the lattice vibrations are
able to slide with respect to the CDW and one obtains
the usual Bohm-Staver phonons. It had been observed
in measurements of the dielectric constant of NbSe3 at
microwave frequencies that ǫ has a large peak around
42 K (Fig. 3(b), data reproduced from Gruner et al.
[20]). This implies that the parameter Γ

Ks
(Fig. 3(c))

will have a peak in the similar temperature range - pre-
sumably taking the system into the ‘phonon gap’ regime
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producing a large change in the experimentally measured
resonant frequency. In Eq. (1), we have disregarded the
vibrations of the CDW, assuming it to be of infinite mass.
In reality, the CDW is coherent up to a length scale of a
few microns and thus has a mass m∗ ∼ 104me. [19] As
this is of the order of the ionic masses that are associated
with the phonons, we should also take into account the
vibrations of the CDW as they will mix with the phonon
modes.

There are two ways in which the CDW can contribute
to the apparent stiffness of the sound modes. The most
natural one is that the opening up of the CDW gap in-
creases the stiffness of the electron gas, which itself con-
tributes to the elastic modulus assuming that the lattice
and CDW are in equilibrium. In general, this is a small
effect, of the order of (∆/W )2 ≃ 10−6, the squared ra-
tio of the CDW gap (∆) to the overall electronic band-
width (W ). This is consistent with measurements on
bulk samples. A second route is more subtle, and is as-
sociated with the fact that the CDW, when distorted by
being pinned to the lattice, produces long range Coulomb
forces, which are themselves screened by the metallic
background in equilibrium. However, when driven at a
frequency which is too rapid for the electron gas to re-
spond, the frequency of a longitudinal sound mode will
be shifted up to the ‘CDW plasmon’.

The sinusoidal charge distribution over space n(r) is
represented as n(r) = nc + n0 cos[Q.r + φ(r)]. n0 is
the amplitude and Q is the wave-vector of the CDW.
nc denotes the electron density in the metallic state.
The spatial variation in the phase φ(r) of the CDW
results from the deformation of the CDW due to pin-
ning and applied electric fields. The dynamics of the
charge density wave can be understood by analyzing
the equation of motion of the CDW phase φ(r). [19]
The response of the system at frequency f is given by

G−1
L = −4π2m∗f2−i2πγ0f+V0−i2πf nce

2

σz−i2πfǫ0ǫz
, where,

V0 is the CDW pinning potential coming from impuri-
ties and the lattice, γ0 is the damping coefficient, σz

and ǫz denote the conductivity and dielectric constant
respectively along the chain direction (along which the
CDW can slide). We have assumed for simplicity that
this pinning is uniform (see Ref. 19 for a discussion).
It can be seen from the last term of the above equation
that there exist two different frequency regimes where
the dynamics of the CDW is distinctly different and a
cross-over between these two regimes occur at a charac-
teristic frequency of fc=σz/(2πǫ0ǫz). At low frequencies
(f ≪ σz

2πǫ0ǫz
), the response is overdamped, with an effec-

tive damping γ = γ0+nce
2/σz. In this regime, the motion

of the CDW is strongly screened by the conduction elec-
trons. Any effect of the coupling of the CDW with the
lattice (such as in the elastic properties) is hard to detect
given the broadness of the response. At high frequencies,
f ≫ σz

2πǫ0ǫz
, we have a restoring term instead of a damp-
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FIG. 3. (Color online) (a) The lattice is represented by a
chain of masses connected by springs each with stiffness Ks.
The position of the ith ion is given by xi. The potential of
the CDW is periodic with an amplitude Γ. Ks ∼

1

ǫ
, where ǫ

is the dielectric constant of the system. (b) Data of dielectric
constant of NbSe3 at RF frequencies as a function of temper-
ature reported by Gruner et al. [20] (c) The parameter Γ/Ks

is plotted as a function of temperature (T ). It is evaluated
following the relation Ks ∼

1

ǫ
, with the data in (b) for 45

MHz frequency being used as a prototype for the variation of
ǫ with T . The potential due to the CDW is assumed to follow
a Landau-Ginzburg expression: Γ ∼ (Tc2 − T )1/2.

ing term, and one obtains a (CDW plasmon) resonance at
a frequency fp given by fp = 1

2π

√

V0/m∗ + nce2/m∗ǫ0ǫz.
Using the conductivity data from electrical transport

measurements on our devices and the dielectric constant
values as measured by Gruner et al., [20] the crossover
frequency fc = σz

2πǫ0ǫz
is estimated to be fc ∼20 MHz.

[21] This shows that our devices with resonant frequen-
cies of tens of MHz exceed this crossover. In contrast, ex-
periments for determining the elastic modulus of macro-
scopic crystals by Brill et al. were performed with reso-
nant frequencies not exceeding a few kHz (0.1-1.7 kHz).
[9] It is not expected that the coupling of the CDW
condensate to the mechanical motion of the ionic lattice
would be discernible at such low frequencies.
Assuming that the pinning potential can be neglected,

fp ∼ (1/2π)
√

nce2/m∗ǫ0ǫz. We take nc ∼2×1025 m−3

from an analysis presented in Ref. 30. The effective
mass of the CDW m∗ ∼104me (Ref. 19). Using these
numbers, we get fp ∼39 MHz. [21] This is of the same
order as the resonant frequencies of our nanowire devices,
which means the Bohm-Staver phonons are close to the
CDW plasmon frequency and the phonon modes can get
renormalized due to a coupling between the ionic lattice
and the CDW.
This Letter demonstrates that the elastic properties

of nanoscale resonators fabricated using a charge density
wave material are strongly affected by the plasmon mode
of the electronic condensate.
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