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Experimental observation of spectral gap in microwave n-disk systems
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Symmetry reduced three-disk and five-disk systems are studied in a microwave setup. Using
harmonic inversion the distribution of the imaginary parts of the resonances is determined. With
increasing opening of the systems, a spectral gap is observed for thick as well as for thin repellers
and for the latter case it is compared with the known topological pressure bounds. The maxima of
the distributions are found to coincide for a large range of the distance to radius parameter with half
of the classical escape rate. This confirms theoretical predictions based on rigorous mathematical
analysis for the spectral gap and on numerical experiments for the maxima of the distributions.
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FIG. 1. (Color online) Left: Sketch of three-disk system,
where one fundamental domain is shaded. Right: Photograph
of the experimental cavity without top plate supporting the
disk inset and the absorber.

In semiclassical physics we investigate asymptotic clas-
sical/quantum correspondence when an effective Planck
constant is small. Examples for closed systems are the
Weyl law [1] which gives densities of quantum states using
classical phase space volumes and the Gutzwiller trace
formula[2, 3] which describes the fluctuations of these
densities in terms of classical periodic orbits and their
stability [3].
For open systems the correspondence between classical

and quantum quantities [4, 5] is more delicate as energy
shells are noncompact and real eigenvalues of the Hamil-
tonian become complex resonances [6–8]. The imaginary
parts of resonances are always negative and they corre-
spond to the rate of decay of unstable states.

For open chaotic systems the Weyl law is replaced by
its fractal analogue which gives asymptotics of the num-
ber of resonances with bounded imaginary parts in terms
of the dimension of the fractal repeller: see [9, 10] for
mathematical, [11–14] for numerical studies and [15] for
recent experimental work. Studying the distribution of
the imaginary parts of resonances [13, 14] does not have
a closed system analogue.
A paradigm for systems with fractal repellers is the n-

disk scattering system (see Fig. 1). It was introduced in

the 80s by Ikawa in mathematics [16] and by Gaspard-
Rice [17–19] and Cvitanović-Eckhardt [20] in physics. It
is given by n hard disks with centers forming a regular
polygon. The distance between the centers is denoted by
R and the disk radius by a; R/a determines the system
up to scaling (see Fig. 1).
The quantum system is described by the Helmholtz

equation

−∇2ψn = k2nψn, ψn = 0 on disc boundaries. (1)

The quantum resonances kn = Re kn + iImkn, are the
complex poles of the scattering matrix. For the three-disk
system this scattering matrix is expressed using Bessel
functions and that allowed Gaspard-Rice [19] to calculate
the quantum resonances numerically.
Classically, particle trajectories are given by straight

lines reflected by the disks. From periodic trajectories
a wide range of classical quantities such as the classical
escape rate, the fractal dimension of the repeller and the
topological pressure can be calculated using the Ruelle
ζ-function [18],

ζβ(z) =
∏

p

[

1−
exp(−zTp)

Λβ
p

]

−1

(2)

where the product runs over the primitive periodic or-
bits, Tp are the corresponding period lengths and Λp the
stabilities. The topological pressure P (β) is then defined
as the largest real pole of ζβ(z). An effective way of its
calculation is the cycle expansion [20, 21]. The classi-
cal escape rate is given by γcl = −P (1) and the reduced
Hausdorff dimension dH of the fractal repeller by the
Bowen pressure formula P (dH) = 0 [22].
Ikawa [16] and Gaspard-Rice [18] independently de-

scribed the quantum mechanical spectral gap as a topo-
logical pressure, a purely classical quantity. The spectral
gap in this context is the smallest C such that Im kn ≤ C.
Gaspard-Rice used Gutzwiller’s trace formula and semi-
classical zeta functions to conclude that Im kn ≤ P (1/2).
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FIG. 2. (Color online) Three-disk system at R/a = 2.88:
in the lowest panel resonances belonging to good (orange
crosses) and the best reconstruction (blue triangles) are shown
in the complex plane within a small frequency range. The
upper two panels show the real and imaginary parts of the
measured signal (black, dashed), and of the best reconstruc-
tion (blue) in this window (vertical lines) based on the poles
marked by the blue triangles.

They confirmed this estimate numerically [17]; this esti-
mate was later proved for general semiclassical systems
[23]. However, this lower bound is not optimal as it does
not take into account phase cancellation [5, 24] and for
weakly open systems this bound is void: for systems with
dH > 1/2, P (1/2) > 0. Hence we distinguish between
thick repellers with dH ≥ 1/2 (Fig. 4a) and thin repellers,
dH < 1/2 (Fig. 4b), see [5].

The same estimate on the spectral gap was obtained
earlier for hyperbolic quotients Γ\H2 [25, 26], another
mathematical model for chaotic scattering [27]. There,
quantum resonances (poles of the scattering matrix of the
surface) are the zeros of the Selberg zeta function and the
topological pressure can be calculated explicitly using δ,
the dimension of the limit set of Γ: P (β) = δ − β. The
estimate Im kn ≤ δ−1/2 is known to be sharp as i(δ−1/2)
(a bound state when δ − 1/2 > 0) is a resonance. There
are no other resonances for Im k < P (1/2)− ǫ, for some
small ǫ > 0 [28]. The question of further improvements
for the spectral gap is an active field of mathematical
research with deep applications to number theory [5, 29].

An interesting property of the Im k-distribution has
been observed numerically in [13]: the imaginary parts of
resonances concentrate at Im k = −γcl/2 = P (1)/2, half
of the classical escape rate. Although no mathematical
result supports this −γcl/2, the density of resonances for
Im k > −γcl/2 is lower [30] than the prediction from the
fractal Weyl law [31–33].

Another connection between the classical escape rate
and the quantum spectrum was observed in microwave
n-disk experiments [34, 35]: the decay of the wave-vector
auto-correlation function for small wave vectors is related
to the classical escape rate.

In this Letter we focus on the distribution of imagi-
nary parts of resonances and compare spectral gaps and
density peaks of experimental Im k-distribution with the

topological pressures and the classical escape rates.
The n-disk system is simplified by exploiting its Dn

symmetry. In this reduction, the two enclosing sym-
metry axes are hard walls acting as “mirrors” (see the
shaded area in Fig. 1). For the quantum mechanical sys-
tem 0-boundary conditions at the symmetry axes imply
that the corresponding scattering resonances are in the
A2 representation [21]. The reduced three and five-disk
system is realized using a microwave cavity. The tri-
angular resonator (Fig. 1) has two metallic side walls
of length 1m meeting at 60◦ for the three-disk, and at
36◦ for the five-disk system. Absorbers on the third side
model an open end. The ratio R/a is changed by mov-
ing a half-disk inset of radius a = 19.5 cm along the
side wall in steps of 10mm. For the three-disk system
the range 2.26 ≤ R/a ≤ 6.17 was technically accessi-
ble; for the five-disk case we had 2 ≤ R/a ≤ 3.9. A
0.7mm wire antenna was inserted through a hole in the
top plate. The height of the cavity h = 6mm leads to
a cutoff frequency of 25GHz. From 2 to 24GHz only
the TM0 mode can propagate and the cavity is effec-
tively two-dimensional. Hence the equivalence between
wave mechanics and quantum mechanics, i. e. between
the time independent Helmholtz and Schrödinger equa-
tion, is valid (for more on the setup see [15], and for an
introduction to microwave billiards, [36, Chapter 2.2]).
Measurements by a vector-network-analyzer reveal the

complex S-matrix. Assuming a point-like antenna, the
measured reflection signal equals [37]

S11(ν) = 1 +
∑

j

Aj

ν2 − ν2j
(3)

where νj are the complex valued resonance positions.
Extracting νj and Aj from the signal is the object of
our data analysis: for closed systems and low frequencies
the resonances are well separated and a multi-Lorentz-fit
works. For open systems, where the resonances overlap
strongly, that fit does not converge. Therefore we applied
the harmonic inversion (HI) on the signal [15, 38, 39],
a sophisticated nonlinear algorithm, to extract the νj ’s
from the measured signal. First S11(ν) is converted
into a time signal and discretized, yielding a sequence
c1, . . . , c2N . Using the relations between the cn, a matrix
of rank N is created. The eigenvalues and eigenvectors of
this matrix contain the information about the resonances
νj and their residuesAj , see [39]. The procedure yieldsN
resonances; hence N has to be chosen larger than its ex-
pected number. Criteria for eliminating the unavoidable
spurious resonances and a detailed discussion is provided
in [15]. Thus we recall only the main ideas: for exper-
imental data we showed that the HI should be applied
several times with different sets of internal parameters,
each giving a set of νj and Aj . Then the reconstruction
based on these results is compared to the original signal.
Fig. 2 shows part of a typical spectrum (black solid line)
and the best (concerning the χ2-error) individual recon-
struction (blue dashed line) within the window indicated
by the vertical lines. The corresponding resonances are
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FIG. 3. (Color online) In the left panel the resonances for R/a = 5.5 in the complex k-plane are shown as well as the distribution
of the imaginary parts of k in the right panel. The shown k range corresponds to a frequency range from 2 to 24GHz. The
orange clouds correspond to all resonances resulting in a good reconstruction as well as the orange histogram. Note that many
orange dots might overlay each other. Blue triangles and blue dashed-dotted histogram describe the set belonging to the best
reconstruction. Black crosses are the numerically calculated poles and the solid black histogram the corresponding distribution.
The dotted red line in the right panel is P (1/2), the red dashed line −γcl/2 = P (1)/2.

marked by blue triangles in the lower panel, the complex
plane. The orange crosses belong to other resonance sets,
also leading to good reconstructions (to maintain clarity
they are not shown in the upper two panels), called good

resonances. Other sets not meeting the criterion are re-
jected.

For the three-disk system we checked the reliability of
the HI by comparing the experimental resonances with
calculations based on the algorithm of Gaspard-Rice [19].
However even for experiments with closed microwave sys-
tems it is known that only the lowest resonances agree
well with the zeta function predictions. For higher fre-
quencies the experimental perturbations disturb the mea-
sured spectrum such that the measured resonances can-
not be associated directly to the theoretical ones, but
statistical properties such as the resonance density per-
sist (see also Ref. 40).

Fig. 3 shows the good HI-resonances in orange and the
best in blue for R/a = 5.5, 40 ≤ Re k ≤ 500m−1. The
orange poles form “clouds” around the blue triangles –
the elongated shape of the clouds is a consequence of the
non-isometric axis ranges. The black crosses indicate the
numerically calculated resonances. The composition of
resonance chains is typical for large R/a parameters [13,
19, 41]. The individual resonances are not reproduced by
the experimental data due to inevitable reflections at the
absorbers and the perturbation by the antenna but the
resonance free regions and the resonance density coincide.

On the right of Fig. 3 the corresponding Im k distri-
butions and P (Im k) are shown, in solid black for the
numerically calculated and in dashed-dotted blue for the
experimental spectrum. The distributions are the same
within the limits of error. This was also true for all good
reconstructions passing the χ2 criterion – one example
is shown in orange. In fact, one can show that agree-
ment with P (Im k) is robust with respect to errors in the
reconstruction as long as the number of resonances en-
tering the reconstruction is approximately the same. For
the example shown in Fig. 3 the number varied between

94 for the numerical data and 117 for the individual re-
construction.

By measuring the averaged Im k distribution for re-
duced three and five-disk systems with different R/a, we
can study the dependence of the Im k-distribution on the
opening of the system (Fig. 4). For varying R/a the av-
eraged histogram of Im k is plotted as a shade plot. The
five-disk case is presented in Fig. 4(a). For R/a = 2 the
system is completely closed however we observe already a
small gap ≈ 0.15m−1 due to antenna and wall absorbing
effects. When opening the system the very narrow Im k
distribution first gets wider and the maximum of the dis-
tribution moves towards higher imaginary parts. From
R/a ≈ 2.5 the resonance free region starts to grow and
reaches a value of ≈ 0.5m−1 for the maximal accessible
opening at R/a = 3.9. Over the whole R/a range the
value of P (1/2) stays positive, thus providing no lower
bound on the spectral gap. The solid black line in the
shade plot shows half the classical escape rate calculated
by the cycle expansion. We show this curve only for
R/a > 2.41 as for lower values, pruning starts for order 4
orbits, and the symbolic dynamic is no longer complete
[20]. In agreement with high frequency calculations [13],
our experiment in a much lower frequency regime shows
that the maximum of the Im k distribution is described
by −γcl/2. We emphasize that there are no free param-
eters to fit γcl to the experiments.

The three-disk system is more open and the repeller
becomes thin for R/a ≥ 2.83, i.e. P (1/2) < 0 provides
a lower bound on the gap. Again one sees that the gap
first increases and only for high R/a values coincides with
the lower bound P (1/2) (dotted black line). At which
exact value of R/a the gap appears and whether it ap-
pears before P (1/2) becomes negative is less clear than
in the five-disk system. The area of the totally closed
system (R/a = 2) is too small to allow meaningful mea-
surements. Since there are no pruned orbits until order
4 from R/a = 2.01 on, we are able to plot the calcu-
lated curve for the full measured range. The maximum
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FIG. 4. (Color online) Shade plots of the distribution of Im k
using a color code from white to dark blue for (a) the five-
disk experiment, (b) the three-disk experiment, and (c) the
three-disk simulation as a function of the R/a parameter. The
classical escape rate (precisely: −γcl/2) is the solid black line.
P (1/2) corresponds to the dotted line. For the five-disk case
the P (1/2) is still positive and hence does not arise in the
plot.

of the Im k distribution decreases for R/a > 3 which
might be surprising at first sight. The reason is that the
time of flight between two scattering events increases lin-
early which will overcompensate the defocussing effect of
a scattering event for large enough R/a.
Fig. 4(c) shows the shade plot for the numerical data

of the reduced three-disk system. Again the correspon-
dence of −γcl/2 (solid black line) is clearly visible only
for largeer R/a values. For large R/a the lower bound
P (1/2) (dotted black line) coincides well with the numer-
ically observed gap. The first appearence of the gap is
not described by P (1/2): see 2.5 < R/a < 2.83. Here
P (1/2) is still positive but a clear gap is already visible;
the same phenomenon as observed in the experimental
data of the five-disk system. We note that P (1/2) is a
lower bound for the gap and that it is not optimal at high
energies [24, 28]. It may happen in the experiment, but
not in the hyperbolic quotient case, that some low energy
resonances violate the semiclassical gap bound P (1/2).
However, we are restricted in the wave number range,
thus it is not guaranteed that we observe the optimal
gap. For the numerical data [Fig. 4(c)] all imaginary
parts calculated are below P (1/2). The fact that there
seem to be values below P (1/2) is due to the bin size
of the histogram. In the experimental spectra the small
number of resonances within the gap correspond to spu-
rious resonances which survived the filtering.
In this Letter we have demonstrated the existence of

a spectral gap in open chaotic n-disk microwave sys-
tems. We could extract the resonances from the mea-
sured signal and thus had direct access to the gap and
the maximum of the Im k distribution. These were com-
pared with the calculated classical values for P (1/2) and
−γcl/2 = P (1)/2. A good agreement was found for suffi-
ciently open systems. But we also show that the bound
P (1/2) does not describe the opening of the gap for ex-
perimental or numerical data. We would like to empha-
size that all investigations were performed in the low ly-
ing k regime thus showing a remarkable agreement with
the semiclassical predictions.
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Boston, 2007).

[28] F. Naud, Ann. Sci. Ecole Norm. Sup., 38, 116 (2005).
[29] J. Bourgain, A. Gamburd, and P. Sarnak., Acta Math-

ematica, 207, 255 (2011).
[30] F. Naud, “Density and localization of resonances for con-

vex co-compact hyperbolic surfaces,” Preprint (2011),
arXiv:1203.4378.
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