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It is shown that a single-layer array of high electric permittivity (high-ε) rods with radius smaller
than λ/10 is capable of reflecting more than 97% of the energy of optical waves with arbitrary
incident angle. Here λ is the incident wavelength. The occurrence of the phenomenon depends on the
construction of two particular grating modes (GMs) in the array which result in two corresponding
transmitted wave components that cancel each other. The construction of the dominant GMs in the
array benefits from the highly independent manipulability of the angular momenta components with
opposite signs in high-ε particles. The effect offers a possibility for improving the optical elements
integration level in the on-chip optical circuits.
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In current integration of optics and phononics, as well
as in micro/nano-fluid mechanics, there is a strong quest
for exploring new mechanisms of manipulating electro-
magnetic(EM), sonic and water waves with miniaturized
subwavelength structures. Single-particle-layer struc-
tures have been suggested to shrink the size of devices
and remarkable progress has been made in optics based
on the nonlinear effect[1, 2], the phase shift produced
by resonant particles[3–5], the coupling between plas-
monic coaxial waveguides[6] and the symmetry of res-
onant modes of particles[7]. Even graphene with one-
atom thickness is applied to guide the flow of light[8, 9].
Besides ultrathin thickness much smaller than the wave-
length, they have the negligible absorption loss at the
same time since few materials are involved. It is therefore
expected that single-layer structures can achieve more
applications in optical manipulation by exploring and uti-
lizing their exotic properties.

Recently the single-particle-layer array has been em-
ployed to develop a reflector which can highly reflect the
EM waves with a particular incident angle[10–13]. The
realization of high reflectivity depends on the utilization
of dielectric particles with high permittivity (ε) which is
available in some semiconductor materials such as FeS2
whose ε has a real part much larger than 20 and a neg-
ligible imaginary part [14] at optical frequencies. More-
over, the recent development of metamaterials makes it
possible to obtain seemingly arbitrary effective permit-
tivity and permeability theoretically[15]. This attracts
us to pay attention to the following fascinating optical
properties of high-ε particles: (1) Subwavelength scat-
tering resonance. For example, when the conditions of
scattering resonant state of constituent particles and the
separation smaller than λ/2[16–21] are required simul-
taneously, particles with high ε offer a way to fulfill all
the requirements. (2) Strong field inside the particles.

The strong field inside high-ε dielectric effectively pro-
duces an electric dipole or multipole that is tunable by
the inter-particle coupling.

Up to now, the application of all the single-layer re-
flectors is hampered by the limitation in the angle of
incidence, in comparison with the photonic crystal coun-
terparts [22–24] which enable EM waves of arbitrary an-
gle of incidence to be reflected with low absorption loss
at the infrared and optical frequencies. However, the
single-layer feature still makes it show great potential in
the miniaturization of devices. In this Letter, we propose
a theoretical design in which EM wave with arbitrary in-
cident angle can be highly reflected by a single-layer rod
array that has subwavelength thickness with the rod ra-
dius rs smaller than 1/10 of the incident wavelength λ.
Since the inter-rod separation a0 is smaller than λ/2, the
array can be seen as a zeroth-order grating composed
of high-ε rods which have the property (2) and are be-
tween two subwavelength resonant states. Despite the
existence of the inter-rod gap, we show that the structure
has abilities to inhibit the wave of arbitrary incident an-
gle penetrating through itself due to the diffraction effect
as long as ε of rods is larger than 20. The single-layer
array behaves as a fence that safeguards against the EM
waves. The compact design probably makes it extremely
appealing in the on-chip optical architecture.

Let us start by considering two-dimensional circular
rods of permittivity εs = 20 with radius rs set as the
unit of length. The rods are uniform in the z direc-
tion and are arrayed into a line in the y direction with
the separation a0 = 2.67rs = 2.67. The reflectivity is
shown in Fig. 1 (a) when the magnetic field of a Gaussian
beam is polarized along the rod axis. Here the calcula-
tion is carried out using the rigorous multiple scattering
theory[7]. The near-100% reflection occurs when the re-
duced frequency ωa0/2πc is around 0.259 for arbitrary
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FIG. 1: (color online) (a) The reflectivity versus reduced fre-
quency ωa0/2πc and angle of incidence for the single-layer
array of rods described in the text. (b) | tan ηn| versus fre-
quency for a single rod with radius rs=1. The peaks denote
the 0th and 1st AMC resonances. Distribution of the H field
intensity when a Gaussian beam strikes a single-layer array
in the y direction at θi = 45◦ (c) and 80◦ (d).

angle of incidence θi from 0◦ to 90◦, where ω is angu-
lar frequency and c is the speed of light in the vacuum.
This means that the inter-rod separation a0 ≈ 0.26λ and
the rod radius rs . 0.1λ. As a result, the thickness of
the single-layer is as thin as 1/5 of the incident wave-
length. The wider frequency band of near-100% reflec-
tion can be achieved by using the dielectric rods with
higher ε. Typically, here we show the total reflection
of a beam with θi = 45◦ and 80◦ in Figs. 1(c) and
(d), respectively. The resonance spectrum of the sin-
gle rod is plotted in Fig. 1 (b) using the Mie scattering
theory[25] in which the incoming and scattered magnetic
(H) fields are expanded as Hi =

∑
n i

npnJn(kbr)e
inφ and

Hs =
∑

n i
nbnH

(1)
n (kbr)e

inφ. Here r and φ are the polar

coordinates, Jn and H
(1)
n are, respectively, the nth order

Bessel function and Hankel function of the first kind and
kb is the wave numder in the background medium. The
n in summation

∑
n runs from −∞ to +∞ with the nth

term in the summation denoting the nth angular momen-
tum channel (AMC). The Mie scattering coefficient αn

can be written as αn = −1/(1 + i cot ηn) with ηn being
the scattering phase shift of the nth AMC. The peaks of
| tan ηn| versus frequency, as shown in Fig. 1(b), corre-
spond to the Mie resonance of a single rod in different
AMCs [25, 26].

Since the frequency band of the total reflection lies be-
tween the first and second resonant states of the single
rod, three angular momenta components n = 0, +1 and

−1 contribute the most to the all-angle total reflection.
For an isolated rod, the component n = 0 corresponds
to an isotropic inner and scattered field[7]. Usually the
summation of two components n = +1 and −1 is called
as the 1st AMC with its inner and scattered field hav-
ing dipolar symmetry[7, 25]. However, each of the two
components receives little attention separately. Fig. 2
shows that the n = −1 and the n = +1 component de-
notes a clockwise and an anti-clockwise rotating dipole
moment, respectively, which manifests itself by a finite
vortex of energy flow in Figs. 2 (a) and (b). Because
b−1 = b1 for an isolated isotropic rod, two rotating dipole
moments have the same amplitude and the definite phase
difference. Their superposition will result in a linear os-
cillating dipole as shown in Fig. 2 (c). Fig. 2(f) shows
that a dipole-like scattered field from an linear oscillating
dipole is produced by the superposition of the scattered
field in the −1st component in Fig. 2(d) and that in the
+1st component in Fig. 2(e)[25]. This somewhat resem-
bles a linearly polarized wave that is the superposition
of a left-circularly and a right-circularly polarized wave.
When the rod has high ε, the effective electric dipole will
have induced charge of high magnitude which strength-
ens the inter-rod interaction. Therefore, unlike the usual
case in which the components +1 and −1 behave as a
whole, in a one-dimensional rod chain angular momenta
components of opposite signs can be independently ma-
nipulated. The tunability feature helps to construct the
particular grating modes (GMs) in the chain. Further-
more, the transmitted wave components from different
GMs interfere destructively, leading to the occurrence of
the near-100% reflection.
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FIG. 2: (color online) The time-averaged Poynting vector in-
side an isolated rod in the −1st (a) and the +1st (b) AMC,
showing a vortex of energy flow and implying a rotating dipole
excited in rods. (c) The schematic diagram of the superposi-
tion of the anti-clockwise and clockwise rotating dipolar mo-
mentums to produce a linear oscillating dipolar momentum.
The scattered field in the −1st (d) and the +1st (e) AMC.
(f) The summation of the scattered fields in the −1st and the
+1st AMC. The gray(red) circle denotes the rod.

We first analyze the role of the various GMs in the
near-100% reflection. In order to analytically calculate
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the GMs, we study an array which is composed of rods of
square cross section since the underlying physics is inde-
pendent on the shape of cross section of rods. The length
of the side of the square is s = 1.87 and the separation
and the wavelength are same as in Figs. 1(c) and (d).
The transcendental equation governing the GMs [27, 28]
in the array is

cos kbmg cos ksms−
1

2
(
εsk

b
m

εbksm
+

εbk
s
m

εskbm
) sin kbmg sin ksms

= cos kya0, (1)

where g = a0−s, kbm and ksm are the longitudinal (parallel
to the chain axis) wave vectors of the mth GM inside the
gaps and rods. When combined with the condition

(2π/λ)2 − (kbm)2 = (2π/λ)2εs − (ksm)2, (2)

which implies that the transverse(perpendicular to the
chain axis) wave vectors are equal in the gaps and rods,
Eq. (1) gives out the eigenvalues kbm and ksm of different
GMs[29, 30]. The GMs is responsible to transfer energy
from the incident side to the transmission side. Let tm
denote the contribution of the mth GM to transmission,
the transmitted wave of the array can be expressed as

Ht(r) =

+∞∑

m=1

tmei(kyy+kx(x−s/2)). (3)

Fig. 3(a) shows the transmitted wave components from
the 1st and the 2nd GM along the line y = 0 for θi = 0◦

since the first two GMs dominate the phenomenon. The
case of θi = 80◦ is given in Fig. 3(b). We see that two
transmitted wave components away from the rods have a
phase difference of π and interfere destructively[29, 30],
resulting in the near-100% reflection. This shows that we
need the GMs which can produce the transmitted wave
components of destructive interference at arbitrary θi.
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FIG. 3: (color online) The transmitted wave components orig-
inating from the 1st and the 2nd GMs when θi = 0◦ (a) and
80◦ (b).

Physically, the variation of kbm and ksm implies that
the effective refractive indexes of the array are different
in the different GMs[31]. Therefore, the two transmitted
wave components can be out of phase as shown in Fig. 3.

FIG. 4: (color online) The magnetic field distribution for the
1st (a) and the 2nd (b) GM inside the array for θi = 0◦. (c)
and (d) correspond to the case of θi = 80◦. The rods are
represented by the square.

In order to uncover the underlying physics, below we pay
more attention to the formation mechanism of GMs by
analyzing their distribution feature rather than the nu-
merical value of the effective refractive index. Figs. 4(a)
and (b) display the 1st and the 2nd GM inside the array,
respectively, for θi = 0◦. For the 1st GM, Fig. 4(a) shows
the H field inside the rod has dipolar symmetry. Corre-
spondingly, the electric dipole moments inside the rods
are aligned with the chain axis[7, 32, 33], so the mode
is called as the longitudinal (L) mode. The 2nd GM in
Fig. 4(b) is a typical standing wave mode along the chain
axis with the adjacent nodes located near two sides of
square rod perpendicular to the chain axis. In order to
demonstrate the variation of modes when θi increases, we
plot the first two GMs for θi = 80◦ in Figs. 4(c) and (d).
The difference of the field modes between the adjacent
rods in Figs. 4(c) and (d) is caused by the phase differ-
ence of the incident wave. The 1st GM is kept to be a L
mode when θi increases to 80◦, as observed in Figs. 4(a)
and (c). However, the 2nd GM in Fig. 4(d) is strictly dif-
ferent from that in Fig. 4(b). The dipolar symmetry of
the H field along the chain axis is induced inside the rod,
and thus a transverse (T) mode is constructed[7, 32, 33].
It shows that the GMs should be tunable by varying θi
in order to achieve the all-angle total reflection.
Next we will illustrate why the GMs can be tuned

through θi with the help of three angular momenta com-
ponents of rods. We will again study the circular rod as
have being done in Fig. 2 and analyze its field modes of
different angular momenta components since its scatter-
ing problem can be rigorously carried out. In Fig. 5 (a),
three Mie scattering coefficients of a rod located in the ar-
ray versus angle of incidence are given. The difference be-
tween b−1 and b1 gradually increases with θi increasing in
Fig. 5 (b). For an isolated rod, this non-symmetric nature
of angular momenta components of opposite signs ±n
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usually only occurs in anisotropic rods[34] and has been
used to achieve an unidirectional EM edge states[35–38].
Now since |b1| < |b−1|, after the superposition they pro-
duce a clockwise rotating dipole moment inside the rod
as shown in Fig. 5 (c). Accordingly, when θi increases
from 45◦ to 80◦, we see that the scattered field in the 1st
AMC becomes more and more similar to that in the −1st
AMC in Fig. 2 (d), by a comparison between Figs. 5 (d)
and (e). It shows that the optical behavior of angular
momenta components of opposite signs is not symmetri-
cal when this rod is located in a one-dimensional array
and can be independently manipulated when its ε is high
enough. This nature of the high-ε rod provides a basis
for the tunability of the GMs in the rod array. The re-
sultant rotating dipole moment in Fig. 5 (c) inside the
rod shows the array simultaneously supports the L and
T modes since the rotating dipole moment is formed by
the interaction of the two modes. Therefore, it is the in-
dependent manipulation of the +1st and the −1st AMC
in high-ε rods that makes the GMs tunable through θi.
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FIG. 5: (color online) (a) Mie scattering coefficients b−1, b0
and b1 versus θi for a rod located in the array. (b) The ratio of
b1 to b−1 with θi increasing. (c) The time-averaged Poynting
vector inside a rod located in the array. The scattered field in
the 1st AMC of a rod located in the array for θi = 45◦ (d) and
θi = 80◦ (e). The scattered fields are calculated for the rod
[gray(red)] located in the origin of coordinates. The presence
of many rods in (d) and (e) implies the interrod coupling is
considered compared to the case in Fig.2 (f).

Compared to the L mode which always can be excited
for arbitrary angle of incidence, the T mode needs the
gradual loss of b1. From the viewpoint of mechanical
system, the L mode is more stable and therefore easier
to be excited since the adjacent electric dipole moments
oriented along the chain axis have the weak interaction.
It should be noted that the 0th AMC of rods also has
an effect on the construction of GMs. For instance, The
standing wave mode in Fig. 3 (b) is mainly supported
by the 0th AMC. In addition, both the L mode with

non-perfect dipolar symmetry in Figs. 4(a) and (c) and
the states 2 and 4 in the T mode show the existence of
the 0th AMC. However, though the working frequency is
closer to the 0th AMC resonance, the 0th AMC can not
be manipulated by the incident angle due to its isotropic
symmetry and the all-angle total reflection must mainly
depend on the 1st AMC.

In summary, we have shown that the all-angle nearly
total reflection is possible using a single-layer array of
high-ε dielectric rods. The phenomenon is expected
to find applications in designing compact optical com-
ponents in photonic circuits. Our discussion applies
equally to other classical waves and particularly to acous-
tic waves.
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