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Abstract

We report an s-wave collisional frequency shift of an atomic clock based on fermions. In contrast

to bosons, the fermion clock shift is insensitive to the population difference of the clock states, set

by the first pulse area in Ramsey spectroscopy, θ1. The fermion shift instead depends strongly on

the second pulse area θ2. It allows the shift to be canceled, nominally at θ2 = π/2, but correlations

perturb the null to slightly larger θ2. The frequency shift is relevant for optical lattice clocks and

increases with the spatial inhomogeneity of the clock excitation field, naturally larger at optical

frequencies.

PACS numbers: 06.30.Ft, 34.50.Cx, 06.20.-f, 37.10.Jk
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At ultracold temperatures, atom-atom interactions can only occur through s-wave colli-

sions. While s-wave collisions are allowed for bosons and are the most important limitation to

the the accuracy of clocks that establish international atomic time [1, 2], they are forbidden

for identical fermions by the Pauli exclusion principle. Even when dephasing made fermions

distinguishable, collision shifts were absent [3]. Thus, ultracold fermions were thought to

be immune to s-wave collisional frequency shifts (sCFS’s) making them ideally suited for

precision metrology [4–8] and quantum memories [9–12]. However, recent theoretical work

predicted that fermions can have an sCFS because generally occurring inhomogeneities of

excitation fields makes particles distinguishable [13–15].

Here we experimentally observe an s-wave collisional frequency shift of an atomic clock

based on a thermal gas of ultracold fermions. Ramsey spectroscopy clearly distinguishes

the novel behaviors of the sCFS, via specific dependences on the first and second Ramsey

pulse areas, θ1 and θ2. We demonstrate that the shift is insensitive to θ1 and thereby the

difference of the spin populations [13], in stark contrast with the shifts for bosons and the

often-used mean-field expression. Instead, the fermion sCFS depends strongly on θ2, which

reads out the interaction induced phase shifts of each atom. The shift is canceled if the

atoms’ phases are detected, on average, with equal sensitivity [13]. Interestingly, we show

that correlations in the sample perturb the null of the sCFS to θ2 slightly greater than π/2.

We explicitly see that the sCFS increases as expected with the inhomogeneity of the clock

field, which we characterize independently. The fermion sCFS we observe in the resolved

sideband regime is exactly analogous to those of optical lattice clocks [6], for which the

spatial field inhomogeneity is naturally large at optical frequencies. Recently, the fermion

sCFS was simulated using an 87Rb Bose gas [16]. They worked, in contrast, with unresolved

trap sidebands to directly excite a spin-wave, and observed the predicted dependence on θ2,

but an unexpected and unexplained dependence on θ1. They elegantly showed a direct link

between spin-waves and the fermion sCFS. Here we observe these predicted spin-waves in

the resolved sideband regime, demonstrating the dependence of the sCFS on the correlations

of the inhomogeneities of the two Ramsey pulses. The sCFS is almost invariably smaller for

fermions as compared to bosons, generally non-zero, and vanishes for a pulse area θ2 near

π/2, which maximizes the clock’s stability.

The sCFS of a Fermi gas behaves distinctly differently than that of a Bose gas. The boson

sCFS depends on the population difference of the two clocks states, often ascribed to the
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difference of mean-field energies. Thus, in Ramsey spectroscopy, the boson shift generally

depends strongly on the area of the first pulse, which sets the populations for collisions that

occur before the second Ramsey pulse. The boson sCFS is insensitive to the area of the

second Ramsey pulse. For the fermion sCFS, the often-used mean field expression does not

apply since the shift is in fact insensitive to θ1 [13]. It instead hinges on the atoms being

excited differently so that they are distinguishable. Equally important is that the excitation

inhomogeneity of the second Ramsey pulse is correlated with that of the first. The atoms in

each colliding pair experience opposite frequency shifts, which cancel on average if the second

pulse is uncorrelated with the first. Additionally, even for correlated pulses, if the second

pulse reads out the phase shifts of both atoms with the same sensitivity (e.g. θ2 ≈ π/2), the

sCFS again vanishes [13].

These dependences on θ1 and θ2 were not observed in initial reports of Sr and Yb fermion

sCFS’s in optical lattice clocks [17–21]. The Yb shifts were actually p-wave and not s-

wave [22], apparent because they depended strongly on θ1 and not θ2, an explanation con-

sistent with the Sr observations [18–21]. Here, we additionally tune the s-wave scattering

length through zero near a Feshbach resonance [23, 24] (Fig. 1(a)) to further and conclusively

demonstrate that the shifts we detect are s-wave and not p-wave.

We use the two lowest-energy hyperfine states of 6Li atoms as clock states, denoted

as |↓〉 and |↑〉. At a bias field near 528 G the interstate s-wave scattering length a↓↑ ≃ 0

[Fig. 1(a)] [23, 24]. The gas of ∼ 8×104 atoms has a temperature of 45µK, ≃ 1.7× the Fermi

temperature, and is confined in an optical dipole trap with trap frequencies (νx, νy, νz) =

(3.8, 7.2, 11.0) kHz [Fig. 1(b)]. We drive a two-photon Raman transition between |↓〉 and |↑〉

using copropagating laser fields, which are focused to w0 ≃ 10µm, comparable to the thermal

cloud radius wth ≃ 6.5µm [Fig. 1(c)]. The Rabi frequency is inhomogeneous, giving different

trap states different Rabi frequencies Ωα ∝ 〈ψα| e
−2r2/w2

0 |ψα〉. The mean Rabi frequency for

the ensemble, Ω ≃ 2π × 500Hz, is sufficiently below the trapping frequencies νy and νz. A

smooth turn-on and turn-off of the pulses further suppresses sideband excitations [25].

To measure the sCFS, we record Ramsey fringes by shifting the phase of the second

pulse with different pulse areas and densities. Figure 1(d) shows the sCFS ∆ν as a function

of density for θ1 = π
2
, θ2 = 3π

4
, and several a↓↑. The apparent pulse areas θ1 and θ2 are

defined as θ1 = θ2 = π/2 giving maximum Ramsey fringe contrast. The mean total density,

ρ = ρ↓+ρ↑, is normalized to our canonical maximum of the mean density, ρ0 = 8×1012 cm−3.
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With a large a↓↑, the density dependence of ∆ν is nonlinear at high density (see below). To

extract the sCFS for a weakly interacting Fermi gas, we vary θ1 and θ2 while at low density

and small a↓↑ [Fig. 1(d) inset], where ∆ν is linear in a↓↑ and ρ [26].

The predicted sCFS of a weakly-interacting, many-body Fermi gas emerges when just

two atoms are considered [13]. The singlet-triplet basis for the two-atom wavefunction

[Fig. 1(e)] is helpful because only the singlet state has a collisional interaction g, proportional

to a↓↑ [27]. The triplet (singlet) states are the product of a symmetric (antisymmetric) spin

wavefunction and an antisymmetric (symmetric) combination of spatial wavefunctions, trap-

eigenstates ψα and ψβ [Fig. 1(e)]. We initially prepare the atoms in the same internal state,

↓, and illuminate them with two spatially inhomogeneous Ramsey pulses [Fig. 1(c)], giving

different Rabi frequencies, Ωα and Ωβ . Because the atoms in the different trap states have

different Rabi frequencies, they become distinguishable, populate a pair-wise singlet state,

and interact during the interrogation time T between the two Ramsey pulses [28]. For weak

interactions, gαβT ≪ 1, the sCFS for two or more atoms is [13]:

∆ν =

∑

pairs

gαβ T sin(2∆θ1) sin(∆θ2) cos(θ̄2)

πTA
, (1)

where the sum is over all atom pairs. Here, ∆θi = ∆Ω τi and θ̄i = Ω̄ τi, where τ1 (2) denotes

the first (second) pulse duration, Ω̄ ≡ (Ωα + Ωβ) /2 ≫ gαβ, and ∆Ω ≡ (Ωα − Ωβ) /2. For

weak interactions, the Ramsey fringe amplitude A is given by sin(θ1) sin(θ2) summed over

all atoms.

In Fig. 2(a) we plot the prediction from Eq. 1 for a thermal gas along with the observed

linear shift ∆ν at ρ0 = 8 × 1012 cm−3, a↓↑ = 4 a0, and ∆Ω/Ω = 0.20 [29]. Two independent

methods determine ∆Ω and are described below. Fitting the amplitude of the prediction to

the observed shifts determines a↓↑. Versus B, with an absolute atom number uncertainty ≃

25%, ∆ν gives a↓↑ = [3.5(9) a0/G] [B − 527.61(7)G] (Fig. 1(a)), in agreement with Refs. [23,

24].

The sCFS given by Eq. 1 vanishes if either ∆θ1 or ∆θ2 is zero. Physically, ∆θ1 must

be nonzero to make the atoms distinguishable and populate the singlet state. During the

interrogation time T , the singlet state acquires a collisional phase shift exp[2igαβT ] and the

second pulse must also be inhomogeneous so that this phase shift is read out. For θ̄2 = π/2

(Fig. 2(a – c & e), green curves and data), cos(θ̄2) goes to 0 so that the sCFS vanishes, even
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for inhomogeneous clock fields, because the opposite phase shifts of each atom are read out

with equal sensitivities [13].

It is remarkable that ∆ν in Eq. 1 is insensitive to θ̄1 (Fig. 2(a, c, & d), red curves and

data). The amplitude in the singlet state (which acquires the collisional phase shift) depends

only on ∆θ1 and not on θ̄1. The sCFS is in general non-zero for θ̄1 = π/2, for which the

population difference N↑ − N↓ = −2N cos(θ̄1) = 0 during the interrogation time T . This

is in stark contrast with the widely-used mean-field expression (grey dot-dashed curves in

Fig. 2 (d - g)) [3, 5, 17–20, 30], where the sCFS ∆ν vanishes at N↑ −N↓ = 0, and disagrees

with an interpretation of Rabi spectroscopy of a Fermi gas [14]. A key result of this work is

the experimental measurement of the fermion sCFS, including an insensitivity of the sCFS

to θ̄1.

Tuning a↓↑ to 0 in Fig. 2(b) gives no sCFS as expected. With a↓↑ = −7 a0 , the sCFS in

Fig. 2(c) has the opposite sign of Fig. 2(a). The fit to Eq. 1 (dashed line) for an ensemble

with a↓↑ = −7 a0 is also shown, along with the model for just two atoms (dotted) with

an effective g chosen to give the same ∆ν for θ1,2 → 0. Equation 1 uses a short-pulse

approximation where only interactions during the interrogation time are considered. In

the experiment, the atoms also acquire a phase shift due to interactions during the pulses.

Further, the Raman beams produce a small time-dependent light shift [31] of the transition

during each pulse. We include these effects and the pulse shapes in a numerically integrated

Monte-Carlo simulation (solid lines in Fig. 2(d - g)). All of these give small corrections, and

the interactions during the pulses are the largest of these.

We highlight that correlations between gαβ and θα,β shift the pulse area where ∆ν = 0

from θ2 = π/2 to θ2 = 0.51 π in Fig. 2(e). Here, the average of cos θ̄2 crosses zero at

θ2 = 0.56 π because the Ramsey fringe contrast has bigger contributions from large θα.

However, atoms in low vibrational states have large θ̄2 and also large gαβ since they reside

in the high density region of the trap. This pushes the zero-crossing of
〈

gαβ cos θ̄2
〉

to

smaller θ2. Finally, because trap states that have a large overlap with each other have

similar overlaps with the clock field, ∆θ1 ∆θ2 and gαβ are anti-correlated and this pushes

the zero-crossing to larger θ2. These perturbations are quite general, for both amplitude

variations and wavefront tilts, and in detail depend on the excitation inhomogeneity and

trap geometry.

With a large a↓↑, the density dependence of ∆ν is nonlinear at high density (Fig. 1(d))
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and reverses sign once the acquired phase shift during the interrogation time T exceeds

π. For just two atoms, Eq. 1 has a sinusoidal dependence sin(2gT ), instead of a linear

dependence on gT , and this gives the observed sinusoidal dependence on density, where the

effective g for many atoms is proportional to density [13, 16]. As in Ref. 16, but here in

the resolved-sideband limit, the sinusoidal dependence is a manifestation of a spin wave,

although we do not spatially resolve the oscillating spin populations.

Fig. 3(a) shows that the sCFS increases quadratically with the spatial inhomogeneity.

Here, we vary the Raman beam waist, measuring the sCFS versus θ1,2 with a↓↑ = −7a0.

The fitted surface, in the limit of small θ1,2, gives ∆ν, which is plotted versus ∆Ω/Ω. We

experimentally determine ∆Ω in two independent ways. First, we drive the Raman tran-

sition and fit the decaying Rabi oscillations between |↓〉 and |↑〉 (Fig. 3(b)). The circles,

squares, and diamonds show the Rabi oscillations for increasing beam waists. We model

the Rabi oscillations of a thermal distribution of trap states ψα with different Rabi frequen-

cies Ωα. Second, we probe the interactions with RF spectroscopy to a third internal state

|3〉 [3, 5, 32]. A Raman pulse of area θ1 is first applied to a sample prepared in |↓〉 to

populate pairwise singlet states, producing an interaction shift. This shift is observed with

Rabi spectroscopy on the |↑〉 − |3〉 transition. The interaction shift ∆ν↑3 is proportional to
∑

α6=β (gαβ,↓↑ − gαβ,↑3) sin
2∆θ1,αβ . It increases with the singlet state population, sin2∆θ1,αβ ,

which increases as ∆Ω increases. The circles, squares and diamonds in Fig. 3(c) shows the

measured shift versus θ1, normalized to the shift of a fully decohered gas. The fully deco-

hered gas is prepared by optical pumping to create an equal ↓ ↑ mixture. The curves are

single-parameter fits of ∆Ω/Ω. The dashed curve in Fig. 3(a) shows the expected quadratic

dependence of ∆ν on ∆Ω.

Our experiment elucidates the novel behaviors of the collisional frequency shifts of clocks

based on fermions. For both Ramsey and Rabi spectroscopy, the spatial inhomogeneities

of the clock field make fermions distinguishable, producing a shift if the inhomogeneities of

the excitation and the readout of the phases of the clock coherences are correlated. Optical

lattice clocks are naturally susceptible to these shifts since optical-frequency clock fields have

fast spatial variations. Wavefront curvatures or small tilts of the clock-field phase fronts lead

to different Rabi frequencies in a gas. When the p-wave collisions are not frozen out and

the scattering lengths are favorable, both the p- and s-wave collisional frequency shifts can

be independently canceled by adjusting θ1 and θ2 around π/2. We note that correlations in
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the sample generally perturb the zero-crossing of the s-wave collisional frequency shift to a

θ2 slightly different from π/2. The shifts for fermions are naturally much smaller than those

for clocks based on bosons, demonstrating that ultracold fermions are excellent candidates

for a variety of precision experiments.
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FIG. 1. (color online). (a) The s-wave scattering length a↓↑ in 6Li tunes linearly through zero

at a bias field of 527.5 G, giving an unambiguous signature to the s-wave collisional frequency

shift. (b) Rabi spectra in the resolved sideband limit for Raman beams centered on (solid) or

offset from (dashed) the cloud center. (c) Two copropagating Raman beams, focused to a waist

comparable to the size of the atomic cloud, provide a spatially inhomogeneous excitation. (d)

Measured frequency shifts versus density for several a↓↑, demonstrating a sinusoidal dependence

characteristic of spin-waves. (Inset) The dependence at low-density gives the linear shift, shown

for the four values of a↓↑ in (a). (e) Singlet and triplet states for two fermions in different trap

states. A spatial inhomogeneity ∆Ω couples triplet states to the singlet state, which has collisional

interactions g ∝ a↓↑.
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FIG. 2. (color online). The s-wave collisional frequency shift of 6Li fermions versus Ramsey

pulse areas θ1 and θ2. (a) For a↓↑ = 4 a0 (B = 528.7G), the measured linear shift ∆ν at

ρ0 = 8 × 1012 cm−3 is plotted along with Eq. 1 for a thermal gas with ∆Ω/Ω = 0.2, determined

independently. The green (red) solid line and points show the predicted and measured shift as θ1

(θ2) is varied with θ2(θ1) =
π
2 . The blue solid line and points show the dependence for equal pulse

areas θ1 = θ2. (b) and (c) are as in (a) with a↓↑ ≈ 0 (B = 527.5G) and a↓↑ = −7 a0 (B = 525.5G).

The shift does vary strongly with θ2, going to 0 near θ2 = π/2. (d – g) The collisional frequency

shift for a↓↑ = −7 a0 for the indicated surface cuts in (c). Also shown are fits to the model for just

two atoms (dotted), the model for many-atoms (dashed), and the numerically integrated model

for many-atoms (solid), which includes the pulse shapes and Raman light shifts. The shift is not

proportional to the difference of partial densities which would imply a strong dependence on θ1

(grey dot-dashed mean-field curves).

11



(a)
¼

¾+ Raman

RF

j#i

j"i

j3i

(c)

(b)

"

FIG. 3. (color online). (a) The measured sCFS grows with increasing inhomogeneity ∆Ω, inde-

pendently measured with Rabi oscillations (N) as in (b) and the frequency shift of the |↑〉− |3〉 RF

transition( �) as in (c). The scattering length a↓↑ is −7 a0 and the dashed curve shows the expected

quadratic dependence. (b) Decay of Rabi oscillations for Raman beams with waists comparable to

the radius of the thermal cloud. A fit of the Rabi oscillations of a trapped thermal gas determines

∆Ω. (c) We use the collisional frequency shift of the |↑〉 − |3〉 transition, with a spatially homo-

geneous RF Rabi pulse, to measure the |↓〉 – |↑〉 singlet state population. The shift increases as

expected with the inhomogeneity of the |↓〉 − |↑〉 Raman field and, via a model, also yields ∆Ω.
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