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Here we address the question of just how cold one can cool a quantum system, given that the size
of the control forces are limited. We solve this problem fully, within the dual regimes of: i) weak
coupling, defined as that in which the thermalization dynamics of the system is preserved, and ii)
relatively strong control, being that in which appreciable cooling can be achieved. State-of-the art
cooling schemes are presently implemented in this regime. Given that the maximum rate of coupling
to the system is bounded, we identify a control protocol for cooling, and provide detailed structural
arguments, supported by strong numerical evidence, that this protocol is globally optimal. From
this we obtain simple expressions for the absolute limit to cooling. The methods developed can also
be used to obtain optimal controls for a broad class of state-preparation problems.
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Preparing quantum systems in pure states is impor-
tant for potential quantum technologies [1–4]. This task
is strongly linked to ground state cooling, as both require
that all the entropy is extracted from the system. As
such, there is a great deal of interest in cooling mechan-
ical resonators, and a number of cooling schemes of in-
creasing effectiveness have been proposed [5–9]. Since the
forces used to implement cooling are always limited, the
question of what ground-state population can be achieved
for a given maximum control force is of both fundamental
and practical importance. There are two distinct regimes
of cooling: either the dynamics of the thermal relaxation
is preserved under the control (weak coupling to the con-
troller) or it is not (strong coupling). Here we consider
optimal cooling in the former. Within this regime, our
analysis is also applicable to the preparation of arbitrary
pure states under general Markovian noise processes.

The complexity of cooling and state-preparation is due
to the interplay of coherent (unitary) and incoherent (ir-
reversible) dynamics. Furthermore, it is usually impos-
sible to prove the optimality of control protocols for dy-
namical systems in which the state-space is unbounded
and the controls constrained. Thus, to determine the
fundamental limits to cooling by quantum control we
adopt a heuristic approach: we attempt to analyze the
structure of the cooling problem in sufficient detail to
make a well-justified guess as to the optimal protocol.
We test the optimality of this protocol by comparison
with those found using numerical optimization. We ob-
tain very strong analytical and numerical evidence that
our protocol is globally optimal, and thus determines the
absolute dynamical limit to cooling in the dual regimes
of weak coupling and high fidelity control.

In this Letter, we consider the most general setting in
which an N -dimensional “target” system can be cooled:
the target system is coupled to a second, M -dimensional
“auxiliary” system via an interaction Hamiltonian, HI,
whose eigenvalues we denote by ~λj . This Hamiltonian,

coupled with any trace-preserving operation on the auxil-
iary, implements the cooling process [10]. The constraint
we impose on the speed of control is that |λj | ≤ g,∀j, for
some rate constant g. For a given experimental scenario,
one calculates the eigenvalues λj by i) determining the
full Hamiltonian, H, for the combined target and aux-
iliary systems; ii) removing all contributions to H that
are proportional to the identity when traced over either
of the systems; iii) calculating the eigenvalues of the ma-
trix that remains. While the limit we obtain applies to
every-state preparation scheme, we note that other con-
straints may be more appropriate in different scenarios.
Our constraint is appropriate for coherent coupling be-
tween target and auxiliary, and this is used by state-of-
the-art experiments [2–4].

Here we focus on preparing the maximal ground-state
population at a single time, rather than in the steady-
state. We do this because: i) the former is essential for
quantum information processing and other tasks that re-
quire coherence with which cooling would interfere; ii)
our analysis below suggests that the optimal ground-state
population cannot be reached in the steady-state.

To proceed we must chose a model of thermaliza-
tion, and the Redfield master equation is the obvious
choice [11]: it describes accurately any weakly damped
Markovian quantum system, and weakly damped systems
are the most important for quantum technologies. (The
Redfield master equation equates to the usual quantum-
optical master equations for the harmonic oscillator and
two-level system (qubit) [11].) We assume that the en-
ergy levels of the system are not altered appreciably by
the control interaction, meaning that the energy gaps are
much larger than g. This is the weak coupling regime and
is what decouples the master equation for the target from
the time-dependent control Hamiltonian. We also choose
the auxiliary system to be ideal: it has large enough en-
ergy gaps to sit in its unique ground state at the ambient
temperature, T , and is not subject to any damping or
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decoherence (we will show that damping the auxiliary
does not improve cooling). Present cooling methods for
ions and nano-resonators are essentially ideal in the first
manner, but not the second. We note that an undamped
auxiliary is only optimal for cooling because we ignore
the practical issue of its reinitialization, but this is per-
missible because the damping of the auxiliary could be
controlled by time-dependent coupling to a third system.

Since the control takes the target out of equilibrium
the bath induces an irreversible relaxation of the sys-
tem during the cooling process, so we must understand
how the control and damping act together. Fortunately
the regime in which cooling is most useful, and the pri-
mary goal of experiments, is that in which the target
is cooled very close to the ground state. This requires
that the damping (thermalization) rate of the system,
γ, satisfies γ(n̄ + 1)/g ≡ ε � 1 (where n̄ is defined be-
low), allowing us to perform an analysis to first order in
ε. Defining D(c)ρ ≡ (c†cρ + ρc†c)/2 − cρc† for an op-
erator c, the master equation that describes thermaliza-
tion of a qubit is ρ̇ = −γ[(1 + n̄)D(σ) + n̄D(σ†)]ρ, where
n̄ = e−~ω/kT /(1−e−~ω/kT ). Here ~ω is the energy gap, σ
is the lowering operator, and the equilibrium population
of the excited state is PT = n̄/(1 + 2n̄). For a harmonic
oscillator the master equation is the same, but with the
replacement σ → a, and ω and n̄ become respectively the
oscillator frequency and the thermal occupation number.

The full system to be studied is thus given by

ρ̇ = −(i/~)[Htg +HI +Hx, ρ] + Lρ, (1)

where Htg and Hx are respectively the target and auxil-
iary Hamiltonians, and Lρ represents the thermal terms
given above. To achieve our goal we must determine the
optimal choice of the auxiliary and interaction Hamil-
tonians Hx and HI (subject to the constraint described
above) and any trace-preserving operations on the aux-
iliary to maximize the target’s ground state population
Pg(t) = tr(ρ|0〉〈0|tg ⊗ Ix) at some final time t. To arrive
at our conjectured optimal cooling protocol, we examine
the relationship between the structure of ρ, the role of
Hx and trace preserving operations on the auxiliary, and
the thermal dynamics of the target.

First we examine ρ. We denote the energy levels of the
target by |m〉, and those of the auxiliary by |j〉x. The tar-
get is initially in thermal equilibrium, and the auxiliary
in its ground state |0〉x. We depict the matrix elements
of ρ in Fig. 1. Each subblock of this matrix is the full
state-space of the auxiliary, and corresponds to a single
state of the target. The initial populations appear in the
elements labelled by Aj , and are thus in different sub-
blocks. Thus if we ignore the continual thermalization
dynamics, the coldest target state is achieved by trans-
ferring all the population to the subblock in the upper
left-hand corner. The essential observation we need is
that cooling is a process of population transfer between
orthogonal subspaces.

FIG. 1. (a) Depiction of the density matrix for the joint state
of the target and auxiliary. The auxiliary states are the “fast”
index, illustrated here with M = 4. (b) A schematic depiction
of the geometry of quantum dynamics, showing why rotations
in the local subblocks do not change the angle-to-go for the
cooling rotation. This rotation is the dashed arrow, and the
dashed ellipse is the motion of a local rotation.

For Hx and HI, we can use insights from the geome-
try of quantum dynamics [12]. The first of these is that
given the constraint above, the fastest way to take any
initial pure state to any other state is via a geodesic, the
equivalent of a great circle in real vector spaces. The
rotation angle along this “great circle” is determined by
the inner product between the current and final states.
The minimum time to get from any state |1〉 to an or-
thogonal state |2〉 is τ = π/(2g), and is achieved by the
Hamiltonian H = g(|1〉〈2|+ |2〉〈1|); this “quantum speed
limit” can also be extended to mixed states [13]. This
shows that in the absence of damping (thermalization),
the fastest way to perform the cooling operation is to ro-
tate each of the excited states Aj to the corresponding
unpopulated states Bj (j > 1) at the maximum rate.

Consider a cooling rotation taking an initial state |A〉
to an orthogonal state |B〉, so that |ψ(t)〉 = cos θ|A〉 +
sin θ|B〉 where the angle θ = gt. The local Hamiltonians
Htg and Hx cannot change θ. This can be seen either
by i) examining the matrix in Fig. 1 and applying the
geometry of vector spaces, or ii) observing that Htg and
Hx preserve the entropy of either system, and changing θ
changes these entropies. In addition, switching to the in-
teraction picture shows that the effect of any local Hamil-
tonian can be obtained by allowing HI to vary with time.
Thus in optimizing the time-dependent control protocol
we can set the local Hamiltonians to zero.

Using the above observations we can now show:

Theorem: If i) the target interacts only with the aux-
iliary (no heating), and ii) the auxiliary has at least the
dimension of the target (M ≥ N), then no completely-
positive (CP) trace-preserving operation on the auxiliary
can increase the maximum possible ground-state popu-
lation of the target at any future time.

Proof: Since M ≥ N , the auxiliary, A, can transfer the
populations of all target basis states at the maximal rate.
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All CP trace-preserving operations on A can be obtained
by performing a joint unitary U between A and a third
system, S. Now enlarge A to include S, meaning that the
interaction also now includes S. Call the new auxiliary
A′, and the new interaction H ′I. Since U is local to A′ it
cannot change θ. And since HI lies within a strict subset
of H ′I it provides no advantage over the latter [14]. �

We now consider the role of L, the continual thermal-
ization of the target during the control process. We first
present an argument that gives strong support for the fol-
lowing simple and rather remarkable statement: all opti-
mal cooling protocols will achieve the maximal ground-
state population just prior to a time τ = π/(2g), and will
do so only when the system starts in equilibrium. This ar-
gument is as follows. The thermal master equation gives
transition rates between the diagonal elements of ρ, and
decay rates for all off-diagonal elements (in the energy
basis). As soon as the ground-state population, Pg, rises
above its equilibrium value, there is a net thermal tran-
sition rate out of the ground state to states orthogonal
to it. The population taken out of the ground state can
be returned by transferring it to the auxiliary, which, as
established above, will require a minimum time τ . Dur-
ing this time, a further amount of population, P (τ), will
be taken out by thermalization. However, we will never
be able to transfer this back to the ground state, as this
population will again flow out by the time we have trans-
ferred it all back. Furthermore, since population transfer
is a rotation on the unit sphere, the rate of the increase
of Pg goes to zero as t approaches τ . Since the exit rate
from the ground state is nonzero at t = τ , no matter how
large g/(n̄γ), there will always be a time slightly prior to
τ at which we lose by waiting longer. Finally, since the
outward transition rate increases as Pg moves away from
equilibrium, P (τ) will only be minimal when Pg starts
at its equilibrium value. This implies that the maximal
cooling can only be obtained instantaneously; no steady-
state cooling protocol can achieve this maximum.

To obtain our proposed optimal HI, we need to ex-
amine where thermalization places the population that
leaves the ground state. For qubits and harmonic oscil-
lators, thermal transitions occur only between adjacent
energy levels, and so we focus on this here (the analysis
readily generalizes). To first-order in γn̄τ = πγn̄/(2g)�
1, population from A0 goes to A1, and from Bj to Cj , ∀j
(see Fig.1). While the populations leaked to A1 and Cj

are small, to obtain optimal cooling to first-order in ε we
must optimally transfer these populations to the ground
state. As A1 is already rotated to B1, and since the
leakage is small and distributed over the transfer path,
the leakage to A1 already handled optimally. The pop-
ulations that appear in the C states can be rotated to
additional states in the B subspace if these are available
(if M is large enough). We can now conclude that: i)
nothing can be done to retrieve the populations in the
C states if M ≤ N ; ii) once the Hamiltonian is chosen

FIG. 2. (Color online) The performance of our conjectured
optimal cooling protocol, compared against numerical opti-
mization. The ground state population is Pg, and 1 − Pg is
shown vs. time for systems of size N , cooled by an auxiliary of
size M , with the control rate/damping rate ratio γ/g = 0.01,
and initial thermal factors n̄. The timescale τ = π/(2g). (a)
Cooling using an ideal (undamped) auxiliary, in which our
protocol is optimal. Dark line: (N,M) = (2, 3), n̄ = 0.5; light
line: (N,M) = (4, 4), n̄ = 0.5 dashed line: (N,M) = (4, 4),
n̄ = 0.1; circles, squares, and diamonds: the corresponding re-
sults for numerical optimization. Inset: numerical optimiza-
tion beyond the optimal cooling time (see text). (b) Cooling
the same systems as in (a), but the auxiliary is significantly
damped with rate κ = g. Our protocol remains optimal for
cooling a single qubit ((N,M) = (2, 3)).

to rotate all the C states to the ground state, all the
first-order leakage is handled optimally.

If our protocol is indeed optimal, then given the struc-
ture of the thermal transition rates in harmonic oscil-
lators and single qubits, the maximum cooling can be
achieved with an auxiliary dimension M = 2N − 1, and
the majority of the cooling with M = N . The optimal
interaction Hamiltonian would be Hopt

I = G+G†, where

G = g

min(M,N)−1∑
j=1

|0, j〉〈j, 0|+ g

min(M−1,2N−2)∑
j=N

|0, j〉〈1, j−N+1|, (2)

and |n,m〉 = |n〉tg ⊗ |m〉x. This interaction is not lin-
ear, and shows that to achieve the best control under
the constraint, all the eigenvalues of HI must be maxi-
mal (|λj | = g,∀j). For cooling resonators, in which the
interaction is typically linear, it may be possible to get
closer to Hopt

I by using multiple qubits as the auxiliary
and introducing nonlinearities in the resonator degrees of
freedom.

To verify the optimality of Hopt
I we turn to numerical

optimization [15]. We perform a search over all Hamil-
tonians of the joint system, including piecewise-constant
time-dependence, under the constraint, for different cool-
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ing times and different auxiliary dimensions up to M = 5.
The thermal dynamics of a target for N > 2 is somewhat
arbitrary, since it depends on the energy-gaps. Here we
just use the master equation for an oscillator truncated
at N [16]; the Boltzmann state for the target is then
the oscillator thermal state, truncated and scaled so that
it is normalized. Our numerical studies confirm all of
the claims made above: i) our protocol is optimal; ii) no
more than 2N−1 auxiliary states are required for cooling
resonators and qubits; iii) the best cooling is obtained
just prior to τ = π/(2g). In Fig. 2(a) we show results
for a two-level target with an of auxiliary size M = 3
(n̄ = 0.5), and we verified that M = 4 and M = 5 do
no better. We also show two cases with target and aux-
iliary sizes N = M = 4, with n̄ = 0.5 and n̄ = 0.1 (With
n̄ = 0.1 this gives a good approximation to an oscilla-
tor, as only the lowest four states are appreciably popu-
lated.) The inset shows cooling using our protocol up to
the optimal time for (N,M) = (2, 3), and the circles give
numerical optimization past this time, confirming that
optimal cooling is at t ≈ π/(2g). All these results use
γ/g = 0.01.

Our analysis so far has assumed an ideal auxiliary sys-
tem because we are interested in the absolute limit to
cooling. Experimentally, however, nanoresonators are
presently cooled via auxiliaries with significant damping,
so the question of optimal protocols for this case is an
interesting one. In Fig. 2(b) we perform optimization
for an auxiliary with the damping rate κ = g. Remark-
ably, for a qubit our protocol remains optimal, and the
performance is essentially unchanged. This also applies
to resonators in the low-temperature limit. For larger
N our protocol is no longer optimal, and the cooling is
degraded as expected.

Having obtained numerical verification, we now cal-
culate the final ground-state population for a harmonic
oscillator and a qubit. To do this we use the linear ver-
sions of the quantum-jump stochastic master equations
that are equivalent to the thermal master equations [17].
We exploit the fact that the dynamics is captured to first-
order in γτ by one-jump trajectories; this technique can
be applied to any dissipation operator [18]. We find that
the maximum ground-state population is reached at t = τ
(that the maximum is slightly before τ is a second-order
effect). For a harmonic oscillator, taking N → ∞, and
thus also M →∞, the minimum population outside the
ground state is

Pmin =
πγ

4g
n̄

(
1 + n̄

(3 + n̄)

4(1 + n̄)2
+ n̄2

(3 + n̄)

2(1 + n̄)2

)
, (3)

here g is the bound on the absolute values of the eigenval-
ues of the interaction HI, and in general for a resonator
it depends on n̄ (see below), n̄ is the average number
of phonons/photons in the target at the ambient tem-
perature, and the regime of validity is γ(n̄ + 1)/g � 1.
When n̄ is small the approximate “cooling factor” is

n̄/Pmin = 4g/(πγ) � 1. We note that optomechanical
sideband cooling (OSC) uses an auxiliary resonator, with
the linear coupling Hosc

I = g̃(a + a†)(b + b†), where a, b
are the target and auxiliary annihilation operators. For
cooling a resonator the size of the state-space is N ∼ n̄,
giving g ∼ g̃ for n̄� 1, and g ∼ g̃n̄ for n̄� 1. Substitut-
ing these into Eq.(3) gives Pmin ∼ γn̄/g̃ for both regimes
n̄ � 1 and n̄ � 1, which is consistent with previous
results on the best cooling possible with OSC [6, 7].

For a single qubit, the minimum achievable excited-
state population is

Pmin =
πγ

4g
PT

(
1− PT /4

1− 2PT

)
,

γ

g

(1− PT )

(1− 2PT )
� 1 (4)

with PT the excited-state population at temperature T .
For PT � 1 the cooling factor is again 4g/(πγ).

The method developed here for finding optimal proto-
cols is not limited to cooling, and can be used for a wide
range of state-preparation problems. As an example, we
use it to determine the minimal error probability for the
preparation of a qubit in the “target” state (|0〉+|1〉)/

√
2,

subject to decay at rate κ and dephasing at rate γ. The
master equation is ρ̇ = −(κ/2)D(|0〉〈1|) − γ(ρ − σzρσz).
The minimal probability that the system is found outside
the target state is [18]

Pmin =
γπ

8g
+
κπ

32g
(2− 5/π). (5)

In conclusion, we have provided a method to obtain opti-
mal protocols for cooling/state-preparation — with very
high confidence — in the dual regimes of weak coupling
to the control system, and control that is strong com-
pared to the noise (high-fidelity control). It is hoped that
the structural insights we have obtained will be useful in
understanding optimal control protocols for cooling and
other tasks in the strong coupling regime.
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