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We demonstrate that point-like defects in non-collinear magnets give rise to a highly dispersive
structure in the magnon scattering, violating a standard paradigm of its momentum independence.
For a single impurity spin coupled to a prototypical non-collinear antiferromagnet, we find that the
resolvent is dominated by a distinct dispersive structure with its momentum-dependence set by the
magnon dispersion and shifted by the ordering vector. This feature is a consequence of umklapp
scattering off the impurity-induced spin texture, which arises due to the non-collinear ground state
of the host system. Detailed results for the staggered and uniform magnetization of this texture as
well as the T -matrix from numerical linear spin-wave theory are presented.
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Introduction.—Electron localization [1], paramagnetic
impurities in superconductors [2], and the orthogonal-
ity catastrophe [3], all attest to the fundamental im-
portance of impurities as probes of quantum many-body
systems. Major research effort in cuprate superconduc-
tors has led to extensive studies of impurities in the
square-lattice Heisenberg antiferromagnets (HAFs), un-
covering new universality classes for disorder-driven tran-
sitions [4–8], impurity-induced magnetic order [9], frac-
tional Curie response [10, 11], and anomalous low-energy
magnon scattering [12, 13].

While the square-lattice HAF is unfrustrated and has
a collinear ground state, defects in non-collinear and frus-
trated quantum magnets have come into focus only re-
cently, displaying an even richer physics. This includes
frustration release, dimer freezing, and mutual impu-
rity repulsion [14–16], valence bond glass states [17, 18],
emergent gauge-flux pinning [19], breakdown of linear re-
sponse [20], fractional impurity moments, and — the pri-
mary topic of this Letter — spin textures [21–23].

Impurity-induced spin textures are a genuine hallmark
of non-collinear magnetic order and can be understood
on a purely classical level. Removing a spin from the
host, or adding an extra defect spin, locally perturbs the
balance of exchange fields and requires the surrounding
spins of the non-collinear host to readjust their directions
recursively, resulting in a long-ranged modification of the
canting angles, i.e., a texture [21–23]. A 1D sketch of this
is shown in Figs. 1(b) and (c) for the field-induced non-
collinear state coupled to an impurity spin. The readjust-
ment effect is absent for collinear order, where impurity
spin simply co-aligns with the host, as in Fig. 1(a). In
contrast to that, the texture implies a fractional screen-
ing of the impurity moment [22]. The real-space decay
of the texture depends on the nature of the non-collinear
state. In a field-induced canted states, textures decay ex-
ponentially on a length scale inversely proportional to the
external field [21]. In frustration-induced non-collinear
states, Goldstone modes lead to an algebraic decay of
the texture [22–24].

In this Letter we advance the field beyond previous
studies, which have focused on the static properties of
defects, and investigate magnon impurity-scattering in
non-collinear magnets. To be specific, we consider the
field-induced canted state of the square-lattice HAF with
an additional defect, namely an extra out-of-plane spin
interacting by an exchange coupling with one of the host
spins. We discover a phenomenon rather surprising, if
confronted with conventional expectations for the scat-
tering amplitude from a point defect, which is either
momentum-independent altogether, aside from the triv-
ial transformation of the excitation basis, or contains only
a broad momentum modulation due superposition of a
few partial waves. Instead, the scattering amplitude dis-
plays a strongly dispersive feature, clearly tracing the
magnon dispersion shifted by the magnetic ordering vec-

FIG. 1. (color online) (a) Impurity spin coupled to a collinear
state: all spins co-aligned. (b) Homogeneous canted state
in external field hz. (c) Impurity spin coupled to the canted
state: host spins readjust, creating a texture. (d) 1D sketch of
umklapp scattering by the texture, which generates staggered
z-component of the effective field with the wave vector Q =
π. (e) Solid black line: magnon dispersion; blurred red line:
dispersive peak in scattering amplitude.
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tor. We show that this effect is an unequivocal conse-
quence of the spin texture. Intuitively, an effective stag-
gering of the magnetic field is generated by the texture,
made explicit in Fig. 1(d). This serves as a potential for
umklapp scattering of magnons, which, in turn, leads to
the central new feature in the T -matrix — a momentum-
dependent resonance. In the following, we provide the
detailed arguments for this result, which should remain
valid for a wide class of frustrated non-collinear systems,
and suggest experiments to test this prediction.
Model.—We consider the square-lattice HAF at T = 0

in an external field, coupled to an impurity spin S′

H = J0
∑
〈lm〉

Sl · Sm − h
∑
l

Sz
l + JS0 · S′i − hS′zi , (1)

where 〈lm〉 are the nearest-neighbor bonds of the square
lattice, the exchange couplings of the host (J0) and host-
to-impurity (J) are antiferromagnetic. The gyromagnetic
ratio is identical for all spins and is included into the
magnetic field h. In the following, we set J0 = 1.

The spin configuration that minimizes the classical en-
ergy of model (1) at h6=0 corresponds to an inhomoge-
neous distribution of spin tilt angles θl out of the xy-
plane where ordering occurs at h= 0, see Fig. 1. For a
1/S expansion, we align the local spin quantization axis
on each site in the direction given by the local canted
frame [25, 26]. The rotation of spin components from
the laboratory frame (x0, y0, z0) is given by Sy0

l =Sy
l and

S
x0(z0)
l =S

x(z)
l sin θl±Sz(x)

l eiQ·rl cos θl, where Q = (π, π)
is the Néel ordering wave-vector. The transformation is
the same for the impurity spin S′i as it can be seen as a
neighbor of the site l=0, which it is coupled to.

Expressing the spin operators in terms of Holstein-
Primakoff bosons, Hamiltonian (1) is transformed into
a series H=Hclass +H1 +H2 + ... with decreasing pow-
ers of S(S′) and increasing number of boson operators.
Each term in this series depends on all θ{l} and Hclass is
the classical energy [27]. The harmonic spin-wave term is
H2 and stability requiresH1≡0. Equivalently, the ground
state must minimizeHclass, i.e. ∂Hclass/∂θ{l} = 0. With-
out the impurity, all θl ≡ sin−1(h/hs) with the saturation
field hs = 8S [25]. With the impurity, minimization gives
a set of nonlinear coupled equations, which determine the
inhomogeneous distribution of the local tilt angles θl —
referred to as the texture hereafter.

In what follows, we study the properties of this tex-
ture numerically in finite N × N clusters with periodic
boundary conditions. First, we briefly address its static
properties and then turn to its quantum dynamics using
numerical real-space diagonalization of H2.
Classical texture.—Here we characterize the classical

ground state, which is sufficient for our subsequent eval-
uation of the quantum dynamics [20–22]. The spatial ex-
tent and field-dependence of the texture can be described
in terms of the staggered z-component of the magnetiza-

FIG. 2. (color online) Impurity magnetization mimp vs h for
J=1, 3, and 6 in N=72 cluster and for J=1 in N=64 cluster
(dashed). Insets: (a) Local magnetization mz

l at the distance
(N/2, N/2) from l = 0 in N = 8 and 16 clusters for J=1.
(b) Local magnetization ∆mz

l =(sin(θ0)−sin(θl)) in a 21×21
section of the N=72 cluster, for J=1, h=0.4.

tion mz
stag,rl

obtained from the set of sin(θl). Our re-
sults, inset (b) of Fig. 2 and [27], largely corroborate
earlier findings of [21], where mz

stag,rl
was investigated

by a continuum theory and quantum Monte Carlo for a
different impurity type. In particular, the texture decays
exponentially at |rl|�1, consistent with the impurity not
coupled to the Goldstone mode of the host system.

Fig. 2 shows another characteristics of the texture:
the impurity contribution to the uniform magnetization
mimp=mz−mz

host vs field for several values of the cou-
pling J . Here mz=

∑
n S

z
n is the uniform magnetization

including S′zi and mz
host=

∑
n 6=i S

z
n is that of the host in

the absence of impurity. mimp should not be confused
with the local magnetization of the impurity. We use
S=S′=1 hereafter. Defining the impurity susceptibility
as χimp = ∂mimp/∂h, Fig. 2 shows several regimes of
screening of the impurity by the texture: partial, com-
plete, and overscreening, as evidenced by χimp> 0, ≈ 0,
and < 0, respectively. This is consistent with a field-
dependent fractional effective impurity spin [22], and is
in a stark contrast with the collinear HAFs, where clas-
sical mimp ≡ S′. The impurity magnetization is critical
at hs, as the susceptibility of the host is singular, similar
to Ref. [25]. Fig. 2 also shows that the saturation in the
system with impurity occurs above hs of the pure host
and that finite-size effects are negligible for the clusters
and field ranges that we use.

For completeness, we note that the impurity-induced
classical texture behaves singularly at h→ 0, although
in a field range of measure zero in the thermodynamic
limit — an effect also noted in [20, 28]. In a finite
system, the energy gain of the canted state in Fig. 1,
∆E ∼ −N2h2/(8S), is less than that of the state in
which the Néel order of the host and the impurity spin
both fully align with the field, ∆E = −hS′. Thus, at
h=0+ host spins are aligned (anti-aligned) with the field,
Sz
l =±S. A spin-flop crossover to the textured state oc-
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curs at hc∼8SS′/N2→0 as N→∞. Inset (a) of Fig. 2
displays this behavior on judiciously small systems by
monitoring the magnetization mz

l of a spin at the largest
geometrical distance from the impurity.
T -matrix.—We now turn to the spectral properties

of the system. Because the texture breaks trans-
lational invariance, the Bogolyubov transformation of
H2 has to be performed numerically [29]. The para-
unitary, 2(N2+1)×2(N2+1) matrix U of this transfor-
mation maps the local Holstein-Primakoff bosons a† =
[a†1, . . . , a

†
N2 , a

†
i , a1, . . . , aN2 , ai ] onto Bogolyubov bosons

b̄† = [b̄†1, . . . , b̄
†
N2+1, b̄1, . . . , b̄N2+1], whose Hamiltonian,

H = b̄†Eb̄/2, is diagonal. The eigenenergies En are
all positive except for Ej = 0 of the Goldstone mode.
The Green’s function in the b̄-basis is also a diagonal
2(N2+1)×2(N2+1) matrix Gb̄(z) = [zP−E]−1, where P
is the para-unit matrix with 1(−1) in the upper (lower)
half of its diagonal. The Green’s function of the local
Holstein-Primakoff bosons is Ga(z) = (U†)−1Gb̄(z)U−1.

However, to formulate the scattering problem for the
impurity-induced texture, the proper basis is that of the
Bogolyubov magnons of the uniform host, which describe
the incident and scattered magnons as plane-wave eigen-
states of momentum k. Thus, we first Fourier transform
the matrix elements of Ga(z) of the local host bosons
to k-space, yielding a matrix Ga

k′k(z). Second, the host
boson terms of this matrix are mapped onto the basis
of the Bogolyubov magnons b† = [b†k, bk] of the uniform
host, using the known parameters of the transformation,
uk and vk, for the square-lattice HAF in a field [26, 27].
This yields a matrix Green’s function with three 2 × 2
substructures made from blocks of rank N2×N2, 1, and
N . They correspond to the dressed (i) host magnon,
(ii) impurity, (iii) and magnon-impurity Green’s func-
tions Gk′k(z), Gi(z), and Gki(z), respectively.

Altogether, starting from the numerical solution of the
classical texture, followed by the real-space diagonaliza-
tion of the harmonic problem and Bogolyubov transfor-
mation onto the uniform host, we obtain the dressed
magnon Green’s function Gk′k(z). From this we extract
the scattering matrix Tk′k(z), focusing on the diagonal
elements Tkk(z), which suffice to state our main findings:

Tkk(z) = [G0
k(z)]−2Gkk(z)− [G0

k(z)]−1 , (2)

where G0
k(z) is the diagonal 2 × 2 Green’s function of

the uniform host magnons with G0,11
k (z) = G0,22

k (−z) =
[z − εk]−1 and εk is the magnon energy.
No texture test.—First, we demonstrate the feasibility

of obtaining the T -matrix from Eq. (2) numerically. For
that purpose, we solve a complementary artificial prob-
lem, in which we neglect the feedback of the impurity on
the host spins, i.e., spins in the plane retain their homo-
geneous field-induced canting of Fig. 1(b) and no texture
is created. While such a reference state is unstable as
Hclass is not at its minimum, it permits an analytical so-

FIG. 3. (color online) Analytical and numerical results for
the T -matrix spectrum in no-texture case, J = 1, h= 1. Ho-
mogeneous canting angles of the host spins θ'0.1253. Impu-
rity canting angle θi' 0.8729 as in the actual texture. Thin
solid blue: exact −Im t11(z=ω) [27] with impurity resonance,
ω≈1.1, and anti-bound state, ω≈4.2. Thick red solid: nu-
merical −Im t11k′=k=0(z=ω+i0.05) for N=64. Inset: numerical
−Im t11k,k(z=ω+i0.05) along the k-path of Fig. 4.

lution of the scattering problem of H2, details of which
are provided in [27]. This solution generalizes the re-
sult of Ref. [30] to the case of finite fields with the goal
of comparing it with the numerical procedure described
above. In the following we consider the resolvent, i.e., the
T -matrix stripped from the matrices of the Bogolyubov
basis transformation tk′k(z) = (B†k′)−1Tk′k(z)(Bk)−1,
where B11(22)

k =uk and B12(21)
k =vk [27].

The analytical result for the the resolvent spectrum,
−Im t11k′k(z), is plotted in Fig. 3 vs frequency ω. Nat-
urally, tk′k(z) ≡ t(z) is momentum independent [27].
This is an expected behavior for scattering from point-
like defects and is similar to scattering from vacancies in
collinear HAFs [12, 13], where the resolvent shows some
broad k-modulation from superposition of a small num-
ber of partial waves. The inset of Fig. 3 shows −Im t11kk(z)
obtained numerically from (2) along the path in k-space
shown in Fig. 4. Clearly, it is also momentum indepen-
dent. In addition, analytical and numerical results, if
evaluated on the finite clusters of the same size, agree to
within numerical precision [27].

Finally, Fig. 3 demonstrates the spectral resolution we
can obtain from the numerical procedure in an N = 64
cluster with a minimally acceptable imaginary broaden-
ing. One can see, that the numerical scattering ampli-
tude has all the features of the analytical one: the im-
purity resonance, the shallow spin-wave continuum, and
the anti-bound state above the upper edge of the spec-
trum [30]. Fine details, such as the anti-bound state gap
and the non-analytic van Hove singularities are smeared
out. Improving this with systems sizes beyond N = 70
is impractical because of the large memory requirements
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FIG. 4. (color online) The T -matrix resolvent spectra
−Im t11k,k(z=ω+i0.05) in N = 64 cluster vs k and ω, J = 1,
h=1, 2, and 4 along the depicted k-path. Panel (a): con-
tour plots superimposed with the shifted magnon dispersion
εk+Q (red-yellow dots). Dashed vertical lines: high-symmetry
points along the k-path. Panel (b): 3D plots.

for the non-sparse 2(N2+1)×2(N2+1) matrices.
Dispersive resonance.—We now consider the T -matrix

for the true ground state of the system with spin texture.
An analytical solution is not possible in this case. With
the feasibility of the numerical procedure established, we
evaluate the T -matrix from Eq. (2) using θ{l} from the
minimization of Hclass as an input to the Bogolyubov
transformation. Representative results are shown in
Fig. 4. Removing the k-dependence due to transforma-
tion of the basis from Tkk(z), we show −Im t11kk(z) as a
function of ω and k along a high-symmetry path in the
Brillouin zone and for several values of the magnetic field.
In Fig. 4, the radii of the textures are much smaller than
the system size [27].

In a sharp contrast to the no-texture case, Im t11kk(z)
reveals a clear dispersive feature. The localized impurity
resonance in Fig. 3 is now visible only as a faint maxi-
mum and is completely overshadowed by the dispersive
resonance. Such a result is completely unexpected for
the point-like impurity coupled to the Heisenberg model
(1). Direct comparison in Fig. 4(a) shows that the k-
dependence of the dispersive resonance closely follows the
spinwave dispersion εk+Q, folded by the ordering vector
Q = (π, π). As one can see, the resonance is most sharply
defined for small fields and gets washed out at higher

fields. We find the dispersive feature to be prominent
regardless of the system size or the impurity coupling J .

It is reasonable to suggest that the dispersive resonance
is a natural outcome of the scattering from an extended
region of the impurity-induced texture, arising due to
non-collinearity of the state. This can be understood
qualitatively from Fig. 1(c), which shows that the impu-
rity spin has a component that acts as a local field in the
direction perpendicular to the homogeneous field-induced
canting. Because of that, the spins of Fig. 1(b) are per-
turbed from their local reference frames by the staggered
transverse effective field. Then the spin-wave part of the
Hamiltonian can be written as H2 = Hh,i +Hstag, where
Hh,i contains the homogeneous canting of spins and the
point-like impurity scattering as in the no-texture case,
while Hstag is inhomogeneous with staggered matrix ele-
ments, which decay on the length scale set by the texture.

Because of the staggering, magnons must experience
an umklapp scattering potential that can be approxi-
mated, for an extended region of the texture, as Hstag ∼∑

k Wkb
†
k+Qbk. Here, a qualitative analogy can be

drawn with the 1D Kronig-Penney model whose T -matrix
is dispersive and has a pole close to the zone-folded band
εk+Q [31]. Because of the finite spatial extent of the tex-
ture, the dispersive resonance must be broadened. This
is consistent with the increase of broadening in Fig. 4 at
higher fields where the size of the texture shrinks. This
may imply a nontrivial behavior of the T -matrix in the
limit of h → 0 where the texture becomes quasi-long-
ranged [22]. We note that the impurity scattering does
not lead to overdamping of the Goldstone mode, i.e., the
spectral density at low energies in Fig. 4 does not occur
at the ordering vector Q.

Our results are of a direct relevance to the excitation
spectra of non-collinear magnets with a low concentra-
tion x of impurities. Since the magnon self-energy is
simply proportional to the diagonal element of the T -
matrix via Σk(ω) ∼ xTkk(ω), one may expect to observe
an anomalous k-dependent broadening of the spectrum
where εk overlap with εk+Q and an equally unusual field-
dependence of such a broadening. Since the dynamical
structure factor is directly related to the Green’s func-
tion, these and other features should be observable by
inelastic neutron scattering and specific predictions will
be subject of future work.
Conclusions.—To conclude, we have presented strong

evidence for a highly anomalous static and dynamic re-
sponse of non-collinear antiferromagnets to doping by
point-like defects. The scattering amplitude exhibits fea-
tures that are strikingly different from usual s-wave scat-
tering and include a highly dispersive resonance due to
an impurity-induced texture. This result should be valid
for the broad class of non-collinear magnets. Further the-
oretical and experimental studies seem highly desirable.
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