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We derive the ac dielectric loss in glasses due to resonant processes created by two-level systems
and a swept electric field bias. It is shown that at sufficiently large ac fields and bias sweep rates the
nonequilibrium loss tangent created by the two fields approaches a universal maximum determined
by the bare linear dielectric permittivity. In addition this nonequilibrium loss tangent is derived for
a range of bias sweep rates and ac amplitudes and show that the loss tangent creates a predicted
loss function that can be understood in a Landau-Zener theory and which can be used to extract
the TLS density, dipole moment, and relaxation rate.

Low temperature two level systems (TLS) in amor-
phous solids have attracted growing attention recently
due to their performance limiting effects in superconduct-
ing qubits and resonators for quantum computing [1–3]
and kinetic inductance photon detectors for astronomy
[4]. TLS, commonly represented by atoms or groups of
atoms tunneling between two configuration states (see
Fig. 1, [5]), are found to decrease the coherence of qubits
due to microwave absorption. Amorphous dielectrics
with TLS are commonly found in Josephson junction bar-
riers and wiring crossovers [2, 3], but TLS are even found
on the surfaces of the resonators with coplanar supercon-
ducting electrodes on crystalline substrates [4].

Despite theoretical and experimental studies of amor-
phous solids over recent decades [6–8], the identification
of the tunneling systems and an understanding of their
non-equilibrium phenomena have limited our ability to
predict their influence on devices. In previous nonequi-
librium studies the application of a dc bias voltage step
with a small ac field frequency ω ≪ kBT

~
, results in a time

dependent permittivity which indicates complex behav-
ior of the TLS [9]. Initially after the electric field step,
the permittivity increases quickly followed by a slow, log-
arithmic, return to the equilibrium value. The observed
behavior is interpreted as a consequence of the bias field
induced change in the TLS density of states caused by
long-range TLS interactions [8, 10]. A numerical treat-
ment of this low frequency phenomena compares the re-
sult to interacting and non-interacting TLS theory [11].

A recent experiment measures the high frequency
(~ω ≫ kBT ) ac loss of dielectric films with a simul-
taneous parallel electric field bias. The study adjusts
the sweep rate of the bias and the ac field amplitude
such that they are able to probe various nonequilibiurm
regimes of the films, and this provides an opportunity to
understand nonequilibrium glass properties in the high
frequency regime. The bias sweeps are created by apply-
ing different dc voltage steps to the film through low-pass
filters with time constants which are large compared to
the resonator response time and the relaxation time of

the TLSs.

In high frequency steady state measurements of amor-
phous dielectrics the resonant loss caused by TLS lowers
(saturates) at large ac fields because the TLS Rabi fre-
quency is larger than the TLS relaxation rate [1, 3, 13].
However, in the nonequilibrium study with a large ac
field the addition of a sufficiently large bias field sweep
rate causes the loss tangent to increase back to the value
found for the small ac field steady state [12].

In this paper we will show that the experimentally-
observed maximum in nonequilibrium loss tangent should
universally reach the value found for small ac fields in the
steady state since it can be derived from the conventional
tunneling model of amorphous solids. In addition we will
derive the loss for a range of ac fields and bias rates and
show that it follows a theory which depends on Landau-
Zener transitions. The derivation of the nonequilibrium
loss allows one to predict the TLS density, dipole moment
and relaxation rate for a given experimental result.

FIG. 1: The potential to a tunneling two-level system in an
amorphous solid. ∆ is the energy difference between the left
and right well states when isolated, which are coupled with
tunneling amplitude ∆0.

Each TLS can be characterized by its asymmetry, ∆
and tunneling amplitude ∆0 [5], which determine its en-
ergy, E =

√
∆2 +∆2

0
. The TLS distribution is given

by the universal law, P (∆,∆0) =
P0

∆0
, reflecting the ex-

ponential sensitivity of the tunneling amplitude to the
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two-well configuration. TLS interaction with an exter-
nal electric field, F, is determined by its dipole moment
p and contributes to the asymmetry energy ∆(F) =
∆(0) − 2pF. Following [1] we assume the TLS dipole
moment to be a randomly oriented vector with a fixed
size p ∼ 1 − 10D, which is assumed in the majority of
theoretical models (e. g. [13]). The use of different mod-
els, e.g. a Gaussian distribution of dipoles will not change
the main result, i.e. the universal value of the loss tan-
gent obtained at large ac fields and bias rates. The loss
tangent obtained here as a function of the bias rate and
ac field amplitude depends on the dipole size, such that
the loss tangent obtained in this work can be generalized
for a distribution of dipoles. The interaction of TLS with
the environment, i.e. phonons and other TLS, are char-
acterized by its relaxation time T1 and coherence time T2

[6].
In the absence of the external dc bias field the inter-

action of TLS with the ac field Fac results in a field en-
ergy absorption which can be described by the loss tan-
gent defined as tan(δ) = ǫ′′

ǫ′ , where ǫ = ǫ′ + iǫ′′ is the
complex permittivity. We consider the regime of a very
high ac field frequency, ω ≫ kBT

~
≫ 1

T1
, 1

T2
, respectively,

which takes place for a typical experimental frequency
ν ∼ 5GHz ( hν

kB
∼ 200mK) and a very low temperature

T ≤ 30mK [1, 12], considered in this letter. In this regime
relaxation and decoherence for resonant TLS are deter-
mined by spontaneous decays of excited states, so that
T2 ≈ 2T1 [14].
The spontaneous emission via photons can modify the

ordinary decay via phonons in a given experiment, and
both will contribute to relaxation. However, the cou-
pling of the thermal bath is assumed to be sufficiently
high such that the TLS far from resonance are initially
in the ground state. As described below, this results in a
TLS that will irreversibly (spontaneously) emit if coher-
ently excited after crossing through resonance with the
ac field, such that the coherent deexcitation processes at
the crossing can be ignored.
The contribution of a given TLS to the dielectric losses

is determined by its interaction with the external mi-
crowave field, Fac cos(ωt), and environment, which are
defined by the TLS Rabi frequency ΩR ∼ pFac

~
and re-

laxation time T1. In the resonant regime, with ΩR ≪ ω

and negligible ac Stark effects [15], one can express the

TLS interaction Hamilonian ĥ using the rotating frame
approximation as

ĥ = −~ΩRŜ
x − (E − ~ω)Ŝz, ΩR = ΩR0 cos(θ)

∆0

E
,

~ΩR0 = pFac, T1 = T1,min

(
E

∆0

)2

. (1)

Here the minimum relaxation time T1,min and maximum
Rabi frequency ΩR0 are defined at ∆0 = E and the latter
also uses a zero for the angle θ between the dipole p and
the ac field Fac.

Solving the Bloch equations for the TLS density matrix
[11] and averaging the result over the TLS distribution
P (∆,∆0) =

P0

∆0
results in the following expression for the

loss tangent [1, 6, 13]

tan(δ) ≈
4π2P0p

2 tanh
(

~ω
2kBT

)

3ǫ
√
1 + Ω2

R1
T1,minT2,min

, (2)

where where ǫ is the relative permittivity (permittivity
in cgs units, in our case of interest T2,min = 2T1,min).
Here the effective Rabi frequency after averaging over the
angle θ is ΩR1 ≈ 8

3πΩR0. The high field saturation of the
loss tangent is caused by a TLS Rabi oscillations which
are faster than the relaxation to the environment. The
temperature dependence of the steady state loss reflects
the thermal dependence of the TLS population difference.
For a swept bias field parallel to the ac field the

energy of the TLS depends on time as E(t) =√
(∆− 2pFbias(t))2 +∆2

0
. A TLS contributes to the mi-

crowave absorption near the resonance E ≈ ~ω. Then
one can approximately represent the energy of a TLS in
the resonant form

E(t) = ~ω + ~v(t− t0),

v = v0

√

1−
(
∆0

~ω

)2

cos(θ), ~v0 = 2p
dFbias

dt
(3)

where t0 defines the time when the exact resonance takes
place. Two resonances are generally possible for each
TLS ∆− 2pFbias(t) = ±

√
(~ω)2 −∆2

0
. We assume that

the time between two resonant passages ω0

v0
is longer than

the TLS relaxation time T1,min ≪ ω so that we can treat
them independently.
We begin the consideration of the non-equilibrium loss

tangent with the oversimplified case when the relaxation
and decoherence rates are small during resonance passage
and can be neglected. Then the loss will take place after
the resonance crossing events induced by the ac and bias
fields (see Fig. 2). In this regime TLS can be described by
the wave function amplitudes in the ground and excited
states (c1, c2), respectively. The modified wave function
(a1, a2) = (c1e

iωt/2, c2e
−iωt/2) taken within the rotating

frame approximation Eq. (1) satisfies equations,

da1

dt
= i

v(t− t0)

2
a1 − i

ΩR

2
a2,

da2

dt
= −i

v(t− t0)

2
a2 − i

ΩR

2
a1, (4)

which are equivalent to Landau-Zener transition dynam-
ics of a two-level quantum system (see Fig. 2, [17]). If
at t = −∞ only the ground state is populated | a1 |2= 1,
| a2 |2= 0 then after the level crossing, t = ∞, one has

| a1 |2= exp
(
−πΩ2

R

2v

)
, | a2 |2= 1− exp

(
−πΩ2

R

2v

)
.

The ‘imaginary part of TLS dielectric constant ǫ is de-
fined by the reactive component of the TLS dipole mo-
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FIG. 2: TLS energy spectrum as a function of time, induced
by the bias field application. The ground and excited states
are coupled by one photon transitions, described within the
rotating wave approximation.

ment, ploss, which can be expressed as [11]

ploss = −i
∆0

~ω
p(a∗1(t)a2(t)− a∗2(t)a1(t)). (5)

This expression should be averaged over TLS parame-
ters including their energies, E = ~(ω + v(t − t0)), tun-
neling amplitudes ∆0 and dipoles p. The integration
over energy can be performed analytically employing the
fact that (a∗1(t)a2(t) − a∗2(t)a1(t)) = i d

ΩRdt (| a1 |2 − |
a2 |2). Then this integration of Eq. (5) is equiva-
lent to the integration over time, dE = vdt. It results
in the Landau-Zener change in population difference,
2|v|
Fac

[
1− exp

(
−πΩ2

R

2v

)]
. The average TLS loss tangent

can then be written in terms of the previous expression
integrated over the distribution in tunneling amplitudes

tan(δ) =
8πP0

ǫF 2
ac

∫ ~ω

0

d∆0

∆0

〈
~
2|v|

(
1− e

−
πΩ

2
R

2|v|

)〉

√
1−

(
∆0

~ω

)2 , (6)

where < ... > indicates an average taken over the dipole
direction with respect to the field.
In the limit of a large bias sweep rate, Ω2

R0
≪ v0,one

can approximate the exponent in Eq. (6) as e−x ≈ 1 −
x. Then all integrals can be performed analytically such
that we obtain the identical result as the steady state
linear response limit (Fac = 0) of Eq. (2), tan(δ) =
4π2P0p

2

3ǫ . This universal result is a consequence of the
Fermi Golden Rule in a linear response limit, which does
not depend on the nature of the δ-function broadening,

determined by either the decoherence rate
(

~

T2

)
or the

energy sweep rate (~
√
v0).

In opposite (adiabatic) regime, v0 << Ω2
R0

, one can es-
timate the integral in Eq. (6) with logarithmic accuracy,

meaning that
∫ 1

0
dx1−e−ax

x ≈ ln(a), as

tan(δad) =
2π2P0p

2

ǫ

2v0
πΩ2

R0

ln

(
e−1/4πΩ

2
R0

2v0

)
. (7)

The intermediate regime, v0 ∼ Ω2
R0

, can be studied only
numerically. The result of a numerical calculation of the
Landau Zener formula of Eq. (6) is shown in Fig. 3 for
dielectric losses as a function of the dimensionless sweep
rate ξ = 2v0

πΩ2

R0

. This result is shown with the correspond-

ing steady state non-linear loss for ΩR0T1,minT2,min = 81
by a black line at 0.127. The two calculations do not
agree in the asymptotic slow sweep limit, because the
Landau-Zener calculations ignore relaxation and deco-
herence processes during resonant passage.

Relaxation and decoherence processes must affect di-
electric losses at small field sweep rates [19]. In fact in
the case of fast relaxation Ω2

R0
T1,minT2,min ≪ 1 one can

expect that the linear regime result will be valid at all
bias field sweep rates (here the time T2,min stands for the
inverse maximum decoherence rate including all possible
decoherence channels though the results are presented
for the low temperature limit T2 ≈ 2T1). In the oppo-
site, strongly nonlinear limit the microwave absorption
should be saturated for small sweep rates, v0, and should
collapse to the equilibrium case of Eq. (2). In the steady
state equilibrium (v0 = 0) the non-linear microwave ab-
sorption comes from the energy domain | E − ~ω |≤
~ΩR0

√
T1,min

T2,min
[6, 18]. If during the time T1,min the change

of TLS energy due to bias field sweep, δE ∼ ~v0T1,min, is
small compared to the size of the domain, then one can
ignore the field sweep and use the equilibrium result, Eq.
(2). Indeed, at the crossover v0 ∼ ΩR0√

T1,minT2

the equilib-

rium non-linear loss tangent given by Eq. (2) and the
non-equilibrium loss tangent given by Eq. (7) become
equal to each other within the accuracy of a logarith-
mic factor, on the order of unity. Thus one can quali-
tatively approximate the dielectric loss behavior for dif-
ferent Landau-Zener parameters, expressed through the
dimensionless field sweep rate ξ = 2v0

πΩ2

R0

and nonlinear-

ity parameter η ≈ 1

ΩR0

√
T1,minT2,min

by either using the

steady state limit, Eq. (2), for small sweep rates, ξ ≪ η,
or Landau-Zener relaxation-free limit, Eq. (6). The lat-
ter regime can be characterized by the asymptotic be-
havior for ξ ≪ 1 (Eqs. (7)) or by the large bias rate limit
in the opposite case (see Fig. 3).

We calculated the non-equilibrium dielectric losses us-
ing a full numerical solution to the Bloch equations for
each TLS [6, 8, 11]. Monte-Carlo integration of the re-
sults over the TLS distribution are shown by the thick
blue line in Fig. 3. The result is consistent with the
predicted behavior in the fast sweep rate limit and the
steady state results of the slow sweep rate limit.

Using this theory one can experimentally extract the
dipole moment p, the TLS density P0, and their relax-
ation time, T1, separately, in the low temperature limit
under consideration (T2 ≈ 2T1). Experiments can cre-
ate a known bias sweep, dFbias

dt , and ac field Fac and find
the TLS dipole moment p that correctly sets the Lan-
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dau Zener parameter, ξ, to agree with Fig. 3. The di-

mensionless parameter, P0p
2

ǫ , can be found independently
from the loss tangent measurements either in the intrin-
sic equilibrium regime, or in the strong nonequilibrium
limit found for ξ >> 1, which with the above informa-
tion of p allows one to separately find P0 and T1. Recent
experiments with microwave ac and field bias contain the
needed experimental regimes ξ = 10−6− 102 and η ≫ 1.
A full comparison of these experiments to this theory will
be completed in a separate work.
The theory is restricted to the low temperature limit

where kBT ≪ ~ω. At higher temperatures and low bias
rate v0T1,min ≪ kBT the result remains applicable after
multiplying the losses by the thermal population differ-

ence factor tanh
(

~ω
2kBT

)
. At larger bias rates the popu-

lation difference cannot equilibrate to the instantaneous
energy E(t), and the loss is determined by an earlier (and
higher) energy E(t−T1). As a result the non-equilibrium
loss tangent can exceed its steady state linear response
limit if the TLSs are already thermally excited.
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FIG. 3: The non-equilibrium loss tangent as a function of
the dimensionless field sweep rate, ξ = 2v0

πΩ2

R0

, in the case

Ω2

R0T1,minT2,min = 81. The thick blue line shows the Monte-
Carlo averaged solution of density matrix equations. The
solid black line shows the asymptotic behavior which includes
the Landau-Zener solution (Eq. (6)), with the constant loss
resulting from steady state behavior. The dashed lines ex-
tend Landau-Zener and steady state behaviors to the whole
domain of sweep rates.

It is interesting that in the adiabatic regime many TLS
are brought into their excited state creating a remarkable
population inversion as in the rapid adiabatic passage
regime leading to the phonon enhancement [20, 21].
In conclusion we propose a theory to explain the effect

of a sweeping electric field bias on the ac resonant loss in
an amorphous dielectric. If the field sweep rate is very
fast the loss tangent reaches a universal value even in the
strongly non-linear regime of high amplitude ac fields,
in agreement with recent experimental observations [12].
At slower bias sweep rates a strongly non-linear regime
takes place, in which the loss tangent decreases with de-

creasing the sweep rate until the saturation at the steady
state non-linear limit Eq. (2). This nonequilibrium loss
tangent theory can be used to interpret and extract many
TLS properties in various contexts and provide a better
physical insight into them.
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