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We present a theory of a reversibly deforming sp2−carbon based system controlled by competing
strain, surface, and electrostatic energies, a carbomorph. For example, external forces (such as
electrostatic, chemical, interfacial) could convert a bistable carbon nanotube between the collapsed
and inflated states. Such a system could operate as a voltage-controlled constant-force spring, a
charge-controlled harmonic spring, or an electromechanical engine or generator (with linear stroke
up to few microns) driven across a propagating quasi-one-dimensional structural phase transition.

PACS numbers: 61.48.De, 85.85+j, 85.35.Kt, 64.70.Nd

Most macroscale electro-mechanical motors are rotary
and use mechanical linkages to create linear motion. At
smaller scales linkages are harder to construct; Nature
has instead developed direct linear motors to power cel-
lular processes at the micro- and nanoscale. Although
several nanoscale rotary motors have been proposed1–3,
artificial linear nanomotors capable of long, micron-scale
power strokes are lacking. Rotaxane motors4 are limited
to displacements of a few nanometers, and other linear ac-
tuators generally cannot produce displacements compa-
rable to size of the device. Here we describe the theory of
a large-displacement linear motor composed of an electri-
cally actuated variable-shape bistable carbon nanotube.
This one-dimensional working body undergoes changes
in shape that are easily coupled to external forces. The
nanotube’s bistability makes possible a two-state “digi-
tal” motor that generates constant-force work. By mod-
ulating the relative stability of the two states, diverse
electromechanical working cycles can be designed.

Single-walled nanotubes of appropriate diameters have
locally stable inflated and collapsed states5–10 as shown
in Fig. 1. Strain energy favors high-symmetry struc-
tures of uniform curvature and surface energy favors low-
symmetry structures with opposing surfaces in contact.
Excess charge on the tube wall favors the inflated state,
thereby enabling electromechanical switching11,12. The
high and low symmetry states are separated by an activa-
tion barrier, even if the system is tuned so that they are
degenerate. However, boundary conditions that clamp
opposite ends open and closed enforce a transition region
between the states and hence enable facile conversion be-
tween them. The imposition of these boundary conditions
is a challenge for the practical realization of a device. A
tube could be held open by a rigid endcap that forms
during synthesis, either due to a metal catalyst particle
on the end or the closure of the sp2 framework through
incorporation of pentagonal rings; the second case ap-
parently occurs in Figure 5 of reference13, which shows
a tapering of the tube cross-section and pronounced de-
formation of graphenic lattice planes where the collapse
front collides with a rigid tube endcap. A tube could be

held closed by mechanical compression or bending14. In
general, we call a variable-shape sp2 carbon-based system
where the competition between strain and surface ener-
gies is moderated by an externally controllable stimulus
(voltage, temperature, etc.) a carbomorph.

Consider a metallic single-walled carbon nanotube of
length L containing a net charge qL which induces po-
tential V on the tube relative to infinity. Take the tube di-
ameter large enough that it prefers to be collapsed at zero
voltage and clamp one end of it in the inflated state, the
other in the collapsed state. If the shape of the transition
region between inflation and collapse is independent of its
location along the tube axis and the cross-sectional shape
of the collapsed region does not depend significantly on
voltage across the range of device operation, then the
tube configuration can be described by a single degree
of freedom: the fraction 0 ≤ ` ≤ 1 of the tube which is
inflated. The mechanical energies and capacitances per
unit length are constant within each inflated/collapsed
section, and the total energy decomposes into indepen-
dent mechanical15 and electrostatic contributions.

A tube rapidly equilibrates to a charge q = CV with
the usual RC time constant. Then on a much slower
timescale the tube equilibrates to the proper mixture of
collapsed and inflated states for the given charge, with
a slow change in C. A mesoscale analogue of the Born-
Oppenheimer approximation applies: the system main-
tains near-instantaneous charge equilibrium on an elec-
tronic timescale while evolving slowly towards shape equi-
librium on a mechanical timescale17. This distinction en-
sures that the state of the tube can be described by a
single voltage V relative to ground on the mechanical
timescale. The voltage, charge per unit length, and in-
flated fraction are related by a simple equation of state:

V =
q

C−(1− `) + C◦`
. (1)

C− and C◦ are the capacitances per unit length of the
inflated and collapsed states. Any two of q, V , and ` can
be independently varied while holding the third fixed to
define arms of a nano-electromechanical cycle. Making
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FIG. 1: Electromechanical cycles of a (40,40) nanotube car-
bomorph in charge-voltage (q –V ) and shape-force (` –F ) co-
ordinates. White, light and dark areas show isoconfigura-
tional/equipotential (`V ), constant-charge/isoconfigurational
(q`), and constant-charge/equipotential (qV ) cycles, respec-
tively. These cycles are designed so that the extrema corre-
spond to fully inflated and collapsed states (`1 = 0, `3 = 1)
with a lower voltage at which collapse and inflation are de-
generate (V3 = Vd). The upper operating voltage V1 is chosen
to maximize the net work (i.e. area enclosed) of the qV cycle.
Elongated shapes are schematic representations of the tube
viewed on its side, indicating its state of (partial) collapse.
On either side of the upper-left tube are representations of
the tubes’ cross-section.

an analogy to ideal-gas thermodynamics, equipotential
(|V ), constant-charge (|q) and isoconfigurational (|`) pro-
cesses correspond to isothermal, adiabatic and isochoric
processes. We will first analyze these three component
processes and then combine them into operational cycles.

The energy budget of a tube connected to a charge
reservoir must account for both the capacitor self-energy
q2/2C and the work performed by the battery (qV for
charge q supplied at voltage V ). The isoconfigurational
process performs no mechanical work and operates simply
as a constant-shape capacitor operating on the fast RC
time scale. During an equipotential process the carbo-
morph acts as a shape-changing capacitor which charges
slowly at fixed voltage. Half of the work qV done by the
battery (i.e. CV 2/2) goes towards charging the carbo-
morph’s instantaneous shape, while the remainder goes
towards a combination of mechanical work performed on
the environment and mechanical dissipation. In general,
mechanical work is favored when an external load guides
the shape change to occur slowly, as described below.

The total energy per unit length is

E|V = [(E◦ − C◦V
2/2)`+ (E− − C−V

2/2)(1− `)], (2)

E− and E◦ are the mechanical energies per unit length
of the collapsed and inflated states. We define a degener-

acy voltage Vd =
√

2E−−E◦
C−−C◦

such that the system prefers

the collapsed state (` = 0) when V < Vd and the in-
flated state (` = 1) when V > Vd. During an equipo-
tential process the transition region exerts a constant
force ∂E

∂` |V = (C◦ − C−)(V 2 − V 2
d )/2 as it approaches

equilibrium. An equipotential carbomorph operates as a
voltage-controlled constant-force spring which can couple
to cargo (solid, liquid or gas11) inside or outside the tube.

During the constant-charge process (i.e. when dis-
connected from the battery), the electrostatic energy
per unit length is simply q2/2C. A fixed charge dis-
tributes between the collapsed and inflated regions as
q = q◦` + q−(1 − `), such that both ` and V evolve to
an equilibrium that minimizes

E|q = E◦`+ E−(1− `) + qV/2, (3)

with V given by the equation of state (1). Two important
threshold charges determine the equilibrium shape: the
charges necessary in the collapsed (q1) and inflated (q2)
states to generate a voltage Vd. Below q1 (above q2) the
equilibrium is ` = 0 (` = 1). For q1 ≤ q ≤ q2 the equilib-
rium is a mixed collapsed/inflated state with configura-
tion `∗ ∈ [0, 1] determined by the charge q. The linearized
restoring force, ∂E

∂` |q = 2(` − `∗)(C− − C◦)(E− − E◦)/q,
about this state is harmonic, so that motion of the tran-
sition region can sense external force, pressure or temper-
ature, revealing them through changes in `.

Pairwise combinations of these three processes, plus ex-
ternal forces on the moving transition region, yield three
distinct cycles which we call qV , `V and q` as shown in
Fig. 1. The qV cycle (1,2,3,4) has a theoretical maximum
efficiency of 100% in converting electrical to mechanical
work (or vice versa) but requires precise timing during
operation and a precisely controlled coupling to external
force. The `V cycle (1,2b,3,4b) can be driven by a simple
electrical signal, but is 100% efficient only in the limit of
zero work performed. The q` cycle (1,2c,3,4c) requires a
simple mechanical stimulus, but is 100% efficient only in
the limiting case of a vanishingly short isoconfigurational
arm (and again, zero net work performed).

First consider the qV cycle, which contains two equipo-
tential and two constant-charge processes as shown by
the dark shading in Fig. 1. The cycle is defined by Vi, qi,
`i (i = 1..4) as related by the state equation (1). Con-
sider a cycle that is bounded below by the voltage Vd at
which inflated and collapsed states are degenerate. For
highest efficiency, consider a full-stroke cycle, i.e. `1 = 0
and `3 = 1. Since the electromechanical coupling derives
from the difference in capacitances of the inflated and col-
lapsed states, we can express many physical quantities in
terms of γ = C◦/C−. Further defining a reduced voltage
ν = V1/Vd, with V3,4 = Vd, we set the high-voltage arm
at V1,2 = [(1 + γ)/2]Vd to maximize the electrical work
WqV = C−V

2
3 (ν − 1)(γν − 1) performed in the cycle.

When operated clockwise, the qV cycle 1→ 2→ 3→ 4
is an electrically powered actuator. Along arm 1 → 2



3

the tube draws charge from a high-voltage battery and
thereby inflates from `1 to `2, the capacitance and charge
growing linearly as the tube performs constant-force work
on the surroundings. Along the constant-charge path
2 → 3 the carbomorph continues to inflate (`2 is not an
equilibrium shape for constant charge), performing addi-
tional mechanical work until reaching `3. A low-voltage
battery with V3 = Vd is then connected to facilitate the
path 3 → 4. This return stroke occurs at zero net force;
charge leaves, the capacitance shrinks, and the carbo-
morph collapses from `3 to `4. Precisely at V3 = Vd, the
time required for the return stroke 3→ 4 diverges and in
the absence of assistance, the carbomorph configuration
is determined by fluctuations of temperature, pressure,
voltage, etc. Voltages above Vd require an external force
along 3 → 4; those below are spontaneous and can per-
form additional work on the environment. Finally, the
path 4 → 1 requires external mechanical work to force
further tube collapse, decrease the capacitance and in-
crease the voltage at constant charge, thereby complet-
ing the cycle. This cycle occurs without any isoconfig-
urational charging of the capacitor: the 50% wastage of
input power in isoconfigurational capacitor charging from
a constant-voltage battery is thereby avoided.

Overall device efficiency is a complex matter, with mul-
tiple contributions depending on the precise device imple-
mentation. We focus first on the efficiencies within the
simple single-degree-of-freedom model and later extend
the discussion to include atomic-scale dissipation. We
write the device efficiency as η|qV for motor operation
(electrical to mechanical conversion) and ξ|qV for genera-
tor operation (mechanical to electrical conversion), where
the subscripts indicate what is held constant in successive
arms of the cycle. η is the ratio of the mechanical work
around the cycle to the change in the electric energy. ξ
is the ratio of the change in the electric energy around
the cycle to the mechanical work. Due to the inherently
dissipative isoconfigurational process, ξ 6= 1/η for q` and
`V cycles. The engine and generator efficiencies of an
ideal qV cycle are both one. The unusual charging dy-
namics of a variable-shape capacitor make this possible.
The charge/discharge of the variable-shape capacitor dur-
ing the qV loop requires no intrinsic resistive loss in the
limit of low series resistance. Of course, in real systems
various nonidealities will reduce the efficiency, but the
practical operating efficiency could conceivably approach
the established high efficiencies of e.g. macroscopic DC
motors. Note, however that the qV cycle must be driven
by precisely timed and shaped voltages and forces.

The `V cycle (1,2b,3,4b) consists of two equipotential
and two isoconfigurational processes. It requires simple
step changes in voltage without precise timing, and we
choose V3 = Vd and V1 = Vmax to facilitate compar-
ison with the qV cycle. The tube inflates from `1 to
`2b at constant voltage V1, gaining charge q2b − q1 and
performing constant-force work. When the voltage is re-
duced to V3, the charge rapidly (i.e. isoconfigurationally)
adjusts at a fixed `3 = `2b. Along the equipotential
path 3 → 4b (V4b = V3), the inflated fraction shrinks

to zero and the carbomorph loses charge. Isoconfigura-
tional charging from 4b to 1 completes the cycle, thus
converting a simple electrical signal into constant-force
work W`V = 1

2C−V
2
3 (γ − 1)(ν2 − 1) when `1 = 0 and

`2b = 1. Choosing V1 ≥ Vd and V3 ≤ Vd would produce a
cycle powered entirely electrically with no external source
of mechanical work required.

The `V cycle suffers inescapable resistive loses during
isoconfigurational charge/discharge: independent of the
size of the resistance in series with the battery, half of the
work supplied by the battery is lost (if the voltage source
operates at a piecewise constant voltage, as for standard
batteries). For the `V cycle Win = C−V

2
3 (γν−1)(ν−1),

Wout = W`V such that

η|`V =
1

2

(
1− γ − ν

1− γν

)
≤ 1. (4)

The efficiency η|`V is zero when the inflated and collapsed
states have the same capacitance (i.e. γ = 1). It is 1

2
when γ = ν (q3 = q1). η|`V = 1 when the inherently
dissipative isoconfigurational processes become negligible
(i.e. ν = 1 or V3 = V1), but in this case no work is
performed around the cycle. Reversing the cycle to 4b→
3→ 2b→ 1 yields the generator efficiency

ξ|`V =
2(γ − ν)

(γ − 1)(ν + 1)
≤ 1 (5)

which is zero when the isoconfigurational processes are
negligible (γ = ν) and one when the voltage swing is zero
(ν = 1). The `V cycle has a simple voltage signal.

The engine and generator efficiencies have a simple
graphical representation, depicted in Fig. 2. In the mid-
dle panel, η is the ratio of the area of the dark grey inner
parallelogram – the mechanical work – to the area of the
light grey outer rectangle – the change in electric energy.
In the bottom panel, ξ is the ratio of dark grey rectangle
to the outer light grey parallelogram. For the ideal qV
cycle, both areas are rectangles so the efficiency is one.

The q` cycle (1,2c,3,4c) consists of isoconfigurational
and constant-charge arms shown by the light grey shading
in Fig. 1. We choose the same voltage swing (V1 ↔ V3)
as for the qV cycle. In engine mode this cycle performs
mechanical work Wq` = C−V

2
3 (γ2 − ν2)(γ − 1)/2γ along

constant-charge strokes 2c→3 and 4c→1. The efficiency

η|q` =
1

2

(
1− γ ν − 1

ν − γ2

)
≤ 1 (6)

is zero when γ = 1, 1
2 when ν = 1, and one when γ = ν.

In generator mode (4c → 3 → 2c → 1), the surround-
ings perform mechanical work on the carbomorph and
pump charge from a low- to high-voltage battery. Along
4c → 3, the low-voltage battery (at V3) charges the in-
flated tube to q3 isoconfigurationally. Next, the tube is
detached from the battery and mechanically collapsed by
external forces along a constant-charge path, 3 → 2c.
The tube then discharges into the high-voltage battery
V1b along an isoconfigurational path 2c → 1, replenish-
ing the charge reservoir. When the external force driving
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collapse is removed, the tube spontaneously inflates along
the constant-charge path 1→ 4c until it reaches an equi-
librium configuration at a potential Vd (at the intermedi-
ate point 4 in the cycle). To continue inflation, external
force must be applied. As the tube inflates, the capaci-
tance increases and voltage decreases until it reaches V4c.
Mechanical work is performed along the constant-charge
paths 3→ 2c and 1→ 4c. The change in the electric en-
ergy around the cycle, is (V1−V3)(C◦V3−C−V1). There-
fore the generator efficiency is

ξ|q` =
2γ(ν − 1)

(γ − 1)(ν + γ)
≤ 1. (7)

Again, the efficiency is zero when the operational voltage
swing is zero (ξ|q` = 0 when ν = 1) and one when the loop
shrinks in a manner that the isoconfigurational processes
disappear (ξ|q` = 1 when γ = ν). The q` cycle has a
particularly simple force signal.

At the atomic scale, the system generates phonons dur-
ing front propagation. We have performed molecular dy-
namics simulations for propagating collapse fronts cou-
pled to external loads, monitoring the amount of energy
that persists as kinetic energy in the moving front, is ex-
tracted as useful work by the load, or dissipates as ther-
mal vibrations. Supplementary materials18 provide de-
tails for a 1 µm long (45,45) tube. Larger external loads
decrease the front speed and thus reduce dissipation, so
efficiency increases at lower operating frequencies. Un-
der modest load and GHz frequencies, a large fraction
(∼50%) of the initial potential energy of inflation can
be captured in organized mechanical motions, i.e. the
kinetic energy of the front and mechanical work of the
load. The small size of the device limits heating to a
few Kelvins. Free oscillations of a collapsing carbomorph
front against one end of the device decay at a rate consis-
tent with the efficiency estimates. A large fraction of the
ideal efficiency η can be attained, even after accounting
for atomistic mechanical dissipation.

A carbomorph exploits a displacive structural transi-
tion with a very large (nanometer-scale) atomic displace-
ment in a system with every constituent atom exposed.
These features give it new ways of coupling to its en-
vironment that are not available to traditional phase-
change materials (e.g. shape-memory alloys), such as
charge-based actuation which is faster and more easily
integrated than thermal actuation. Unlike other quasi-
one-dimensional systems that also exploit internal phase
boundaries for switching, such as “racetrack” magnetic
memories in ferromagnetic nanowires, the two states of
the carbomorph – inflated and collapsed – are not re-
lated by a symmetry transformation. For example, the
elastic moduli, electric conductivity19, and vibrational
entropies of the inflated and collapsed carbomorphs can

differ substantially, facilitating new device modalities. In
addition, since charge is a conserved quantity whereas
magnetization is not, a fixed-charge mode is readily ac-
cessed (whereas a magnetic system in equilibrium is lim-
ited to fixed-field operation). Some of this physics can
be extended to other types of shape changing capaci-
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FIG. 2: Mechanical work, engine and generator efficiency as
function of the voltage swing V1 − V3, for V3 fixed at Vd.
Solid, dashed and dotted lines show qV , `V , and q` cycles
respectively. The shaded areas of the inset glyphs (in qV -
space) depict the variable efficiencies along the curves.

tors, such as dielectric elastomers20, which can be fab-
ricated in quasi-one-dimensional geometries. Writing the
vibrational entropies per unit length of collapsed and in-
flated states as S− and S◦, the system transitions be-

tween the two states12 at Tc = E◦−E−
S◦−S−

. This thermo-

electromechanical coupling can be exploited to generate
electrocaloric effects. These effects require tubes of suffi-
ciently large diameter. Introduction of sulfur during syn-
thesis can facilitate production of larger-diameter single-
walled tubes21, and large-diameter single layers can be
extracted mechanically from wide multiwalled tubes22.
Multiwalled tubes themselves could also show similar
deformational response, with appropriate adjustment of
the effective bending modulus and electrostatic screening.
We thank Paul Lammert for valuable discussions and ac-
knowledge NSF CMMI-0727890 and DMR-0707332 for
support.
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