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We have measured the persistent current in individual normal metal rings over a wide range of 

magnetic fields. From this data, we extract the first six cumulants of the single-ring persistent 

current distribution. Our results are consistent with the prediction that this distribution should be 

nearly Gaussian for diffusive metallic rings. This measurement highlights the sensitivity of 

persistent current to the mesoscopic fluctuations within a single isolated coherent volume. 
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One of the fundamental archetypes in mesoscopic physics is a system whose volume is 

sufficiently small that electrons remain quantum coherent within it, yet sufficiently large and 

complex that its energy spectrum cannot, in practice, be calculated exactly. Such a coherent 

volume can be realized in a microfabricated metal device cooled to sufficiently low 

temperatures. The electronic spectrum of such a device will depend upon the angstrom-scale 

disorder within the metal, which is beyond the control of most fabrication techniques. As a 

result, the device’s spectrum (and all related physical quantities) will be drawn randomly from an 

ensemble representing the possible realizations of the disorder within nominally identical (i.e., 

lithographically identical) devices. 

The sample-to-sample fluctuations that result from this randomness are characterized by a 

distribution function Px. Here x represents any physical quantity that depends upon the disorder, 

for example the conductance g or the persistent current I. These distributions play an important 

role in our understanding of how electrons flow through disordered materials, for example in 

Anderson localization and the scaling theory of conductance.1,2,3 For metallic samples (i.e., with 

mean conductance g  >> 1 in units of e2/h) calculations predict that Pg and PI approach a 

Gaussian distribution as g → ∞ .4,5,6,7,8,9 Deviations from Gaussianity at finite (but large) g  

reflect the approach of Anderson localization and the “breakdown” of single-parameter scaling 

that is due to a finite-sized system’s vestigial sensitivity to the particular details of its 

microscopic disorder.3,4  

Several measurements of Pg have been made in systems with g  ≲ 1, including ballistic 

semiconductor quantum dots10,11,12 and semiconductor wires near the localization threshold.13 In 

this regime, experiments have found agreement with theory. However in metallic samples, 

experiments to date have largely been confined to measurements of 2g , the second cumulant 

of Pg. These measurements of 2g  have found excellent agreement with theory in a broad 

range of circumstances.14,15,16,17,18 However, little is known experimentally about mesoscopic 

fluctuations (of g or any other quantity) in metals beyond the second cumulant.18 

Measuring the full distribution of mesoscopic fluctuations in a metal device is challenging. 

In part this is because most experiments detect g, and so must attach leads to the device. These 

leads are much larger than the electrons’ phase coherence length Lφ, and so contain a large 



number of coherent volumes that contribute in some degree14,19 , 20  to the measured g. (The 

contribution from the leads is less important when g ≲ 1, as in Refs.[10,11,12,13].) Since the 

fluctuations of each of these coherent volumes are assumed to be independent, higher cumulants 

of Pg will tend to be suppressed in such a measurement, with the result that the observed 

fluctuations will appear more Gaussian than the actual Pg. The impact of the leads can be 

reduced by measuring Pg in long wires (i.e., much longer than Lφ) but this ensures that the wire 

itself contains many coherent volumes, with the result that the observed fluctuations will again 

appear more Gaussian than Pg.18 

However it is possible to measure the mesoscopic fluctuations of a single coherent volume 

by detecting the persistent current I in an isolated metal ring. This has been challenging in the 

past owing to the small signals involved,21 but it was recently shown that micromechanical 

torsional magnetometers can measure persistent current with very high sensitivity and low back-

action.22,23 This technique has been applied primarily to arrays of metal rings, with the result that 

the first two cumulants I  and 2I  of PI were measured with high precision over a wide 

range of parameters.23,24 However the sensitivity achieved in Ref. [23] (as well as in other studies 

of individual metal rings25,26) did not allow for measurements of individual rings with adequate 

signal-to-noise ratio (SNR) to resolve the higher cumulants of PI. 

Here we describe measurements of the persistent current in a large number of individual 

rings. From these measurements we extract the first six cumulants of PI, as well as other higher-

order statistical properties of the persistent current. This is achieved by improving the SNR of the 

technique described in Refs. [22,23], and by combining data from more than 400 effectively 

independent measurements. We find that our results agree with theoretical predictions to within 

the sensitivity of the measurements. Specifically, we find that that the first six cumulants of PI 

are consistent with a Gaussian distribution. The small deviations from Gaussianity that are 

predicted by theory are too small to be detected in our experiment. 

A typical device is shown in Fig. 1. It consists of a single-crystal Si cantilever supporting a 

single Al ring. The fabrication of these devices has been described previously.22,23 The rings 

were fabricated via standard electron-beam lithography and were evaporated from a 99.999% 

purity Al source onto a Si substrate with a native oxide. In addition to the rings, Al wires and 

contact pads were co-deposited onto the same wafer to allow for transport characterization of the 

metal. Details of these transport measurements are given in the Supplemental Material (SM). 



These measurements show that Lφ > 2πr (r is the rings’ mean radius) for the temperatures at 

which the persistent current is measured. They also provide the electrons’ diffusion coefficient D 

= 0.020 ± 0.0015 m2/s. 

The procedure for measuring the persistent current (PC) has also been described 

previously.23 The cantilever’s displacement is monitored by a laser interferometer. The signal 

from the interferometer is used to drive the cantilever in a phase-locked loop, allowing the 

cantilever’s resonance frequency ωm to be monitored. In the presence of an applied magnetic 

field B, the persistent current I circulating in the ring produces a torque on the cantilever. This 

torque changes ωm, and I is inferred from this change. Details are given in the SM and Ref. [23]. 

Measurements of the PC were made at temperatures 320 mK < T < 365 mK, and magnetic 

fields 4 T < B < 9 T (applied at an angle α = 45° relative to the rings’ plane). This is well above 

the critical field of Al, ensuring that the rings are in their normal state. The large B is required to 

produce a detectable torque. It also simplifies the data analysis, as large B within the metal of the 

ring strongly suppresses the effect of electron-electron interactions on the PC,24 allowing us to 

compare our results to independent-electron theory (though we note that for large g  

interactions are not predicted to make PI non-Gaussian 6,7,8). 

Measurements were made on eight different rings, with each ring on a separate cantilever. 

The full data sets from each ring, as well as the rings’ dimensions and other properties, are 

shown in the SM. A typical measurement of I(B) for one of these devices (ring #6) is shown in 

Fig. 2. The rapid oscillations in Fig. 2(a) & 2(b) are due to the Aharonov-Bohm (AB) effect: as B 

is varied, the magnetic flux Φ = BAΦsinα through the ring varies, causing I(B) to oscillate with 

period Bper = Φ0/(AΦsinα). Here AΦ = πr2 is the typical area enclosed by the electrons in the ring, 

and Φ0 = h/e. No higher harmonics of the AB oscillations were observed above the noise floor of 

the measurement. 

The AB oscillations’ amplitude (and upon closer inspection, their phase) varies on a field 

scale larger than Bper. These aperiodic modulations result from the fact that sweeping B also 

varies the magnetic flux in the metal of the ring Φm ≈ 2πrwB, where w is the ring’s width. 

Because the ring represents a single coherent volume, its spectrum is expected to be randomized 

each time Φm changes by ~ Φ0.27 The ergodic hypothesis identifies this randomization with a 

new realization of the microscopic disorder,27 so measurements of a single ring over a wide 

range of B can be interpreted as measurements over a large number of lithographically identical 



rings. This allows us to use the eight physically distinct rings to measure a much larger number 

of effectively independent rings. As described below, the large number of effective samples is 

crucial for making an accurate estimate of the higher cumulants of PI.28  

Based on these considerations, at large magnetic fields the persistent current is expected to 

take the form:24 

 

( ) ( )( ) ( )
0 0( , ) ( )sin 2 / ( )cos 2 /I I Iπ π+ −Φ Φ = Φ Φ Φ + Φ Φ Φm m m .  [1] 

 

Theory makes three specific predictions concerning I(+) and I(-) (the quadrature amplitudes of the 

AB oscillations). The first is that they are stochastic functions of Φm characterized by a 

correlation function: 

 
( ) ( ) ( ) ( ) 2( ) ( ) ( ) ( ) ( / )m m m m m m m cI I I I I C+ + − −Φ Φ + ΔΦ = Φ Φ + ΔΦ = ΔΦ Φ  [2] 

 

that decays rapidly for ΔΦm >> Φc, where Φc is the correlation scale, which is typically a few 

times Φ0. Both Φc and the normalized correlation function 0 ≤ C(x) ≤ 1 have been calculated in 

Ref.[24].  

The second prediction is that the distribution of these quadrature amplitudes ( ) ( ) II IP P P+ −= =  

is Gaussian in the limit g → ∞ .6,7,8,9 For finite but large g  it is predicted6,8,9 that the nth 

normalized cumulant (defined below) of the persistent current κn ~ g2-n. In our samples g ~ 104, 

so these predicted deviations from Gaussianity are well below our present sensitivity (and we 

note that some κn are suppressed still further by a large magnetic field9).  

Lastly, correlations between I(+) and I(-) are predicted to be absent.24 

To test these three predictions, we first use the I(B) data from one sample (ring #6, see SM 

for the full data sets and ring parameters) to determine the normalized autocorrelation of the 

persistent current, 2( ) ( ) /I B I B B I+ Δ . The result is plotted in Fig. 3, and shows AB 

oscillations whose envelope initially decays on a field scale that is a few times Φ0/2πrw, in 

qualitative agreement with the discussion above. After this initial decay the envelope does not 

approach zero, but instead undergoes apparently random fluctuations. These fluctuations are due 

to the finite size of the data set, and are discussed further below. 



We can make a more quantitative comparison with theory by fitting the autocorrelation 

data in Fig. 3 to the prediction24 that it should consist of AB oscillations whose envelope is given 

by C(ΔB/Bc), where Bc = Φc/2πrw.  The resulting fit is shown as the red line in Fig. 3. The fit 

parameters are (6)
cB = 37 mT and (6)

perB  = 25 mT (where the superscript denotes the ring #), in 

good agreement with the dimensions of the ring. The autocorrelation data from the other seven 

rings showed comparable agreement with the theoretical prediction, although the fitted values of 

Bc varied from ring to ring (all values of the ( )
c

iB  are given in the SM). This analysis provides us 

with two useful results. The first result is the agreement between the measured and predicted 

form of C(x), which justifies our use of the analytic expression24 for C(x) in the analyses below. 

The second result is the determination of the correlation field ( )
c

iB  for each ring, which will also 

be used below. 

To determine the form of the distribution PI from our measurements, we begin by applying 

the Hilbert transform to the I(B) data from each ring. This provides the quadrature amplitudes 

I(+)(B) and I(-)(B), as shown in Fig. 2(c). It is then straightforward to compute the cumulants of 

I(+) and I(-), e.g., from their moments. Since there is no physical distinction between I(+) and I(-) 

when Φm >> Φ0, we consider the average of their cumulants:  

( ) ( )( ) ( )1
2

n nnI I I+ −⎛ ⎞≡ +⎜ ⎟
⎝ ⎠

. To account for variations between the rings (e.g., of D, r, 

and T), the contribution to nI  from each ring is normalized by the variance 2I  of that 

ring, giving the normalized cumulant 
/22/

nn
n I Iκ ≡  for the entire data set.  

The first several κn are plotted as blue circles in Fig. 4(a). The prediction that PI is Gaussian 

(corresponding to κn = 0 for all n ≥ 3) is indicated by the black circles in Fig. 4(a). The data 

appear qualitatively consistent with a Gaussian distribution; however, to make a meaningful 

comparison between experiment and theory we estimate the uncertainty in these values. The two 

most important sources of uncertainty in the measurements of κn are the finite SNR of the I(B) 

data and the finite size of the data set from which the κn are calculated. We estimate the impact 

of the former by applying standard error-propagation techniques to the known uncertainty in 

each I(B) measurement. This procedure is described in the SM, and leads to the blue error bars in 

Fig. 4(a). 



The finite size of the data set leads to a statistical uncertainty δκn in the estimate of each κn. 

If the data sets for I(+)(B) and I(-)(B) each consisted of uncorrelated data points, then values for 

the δκn could be found in standard statistics references. However it is clear from Fig. 2(c) and 

Fig. 3 that each quadrature of the AB oscillations contains correlations that are characterized by 

the function C(ΔB/Bc). In this case the δκn depend upon the form of C(x), the value of Bc and the 

value of Bspan, the range of B over which the PC is measured:28  
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δκ κ κ
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                ( ( ))n

nc C x dx
∞

−∞
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(where the dependence of Bc, Bspan, and cn upon the ring # has been suppressed). The black error 

bars in Fig. 4(a) correspond to the δκn calculated from Eq. 3. Since δκn < 1 only for n < 7, we 

plot the results only up to κ6. 

In addition to calculating the cumulants of PI from our data, we can also plot the 

measured PI in the form of a histogram of the I(+)(B) and I(-)(B) data. To reduce oversampling 

artifacts in this histogram, we first bin the I(+)(B) and I(-)(B) data into a smaller data set. We 

choose the size of this smaller data set to correspond to the number of effectively independent 

data points in the entire data set28 (i.e., from all eight physically distinct rings): 
8

( ) ( ) ( )

1

2 /i i i
n

i

N B c B
=

= ∑eff span c  ≈ 412 (the factor of 2 in this expression arises from the two quadratures). 

Here we have used n = 2 somewhat arbitrarily, but we note that Neff depends only weakly upon 

the choice of n. As in the calculations of the κn, the ( ) ( )I B+  and ( ) ( )I B−  data from each different 

ring are normalized by their own variance to account for differences among the rings. The 

histogram of the resulting data set is shown in Fig. 4(b), along with the no-free-parameter 

prediction that this histogram should be Gaussian with zero mean and unit variance. 

We can use these results to understand the apparently random fluctuations of the 

autocorrelation data in Fig. 3. At large ΔB, the data is expected to be uncorrelated (i.e., C(x) 

approaches zero for large x). However the standard error of the autocorrelation of a data set 

consisting of N independent samples is29 1 /C Nδ = . The data set for ring #6 contains (6)
eff 44N =  

independent samples; thus at large ΔB the envelope of the autocorrelation in Fig. 3 should have a 



typical value ≈ 0.15. This value is indicated by the dashed lines in Fig. 3, and is in agreement 

with the data. 

Lastly, we test our data for correlations between the quadrature amplitudes. From the 

I(+)(B) and I(-)(B) data it is straightforward to calculate the experimental value of

( ) ( ) ( )2 ( )2cov( , ) /I I I Iρ + − + −
+− ≡  which is predicted24 to be zero. From our data we find ρ+- 

= 0.02 ± 0.05, where the uncertainty arises from the finite size of the data set. This result is 

consistent with the prediction that I(+)(B) and I(-)(B) should be independent of each other. 
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FIGURES AND CAPTIONS 

 

 
 
Figure 1.  Scanning electron micrograph of a cantilever with a single ring similar to the ones 

used in the experiment. Inset: magnified view of the ring. These images show the cantilever and 

ring prior to their release from the underlying SiO2 layer. 

  



 

 

 

Figure 2. Typical measurements of the persistent current in a single ring. (a) A small section of 

I(B), the persistent current as a function the applied magnetic field. The oscillations are due to 

the Aharonov-Bohm effect, while the aperiodic modulation arises from flux inside the metal of 

the ring. (b) Red curve: I(B) over a broader range of magnetic field. Blue curve: the envelope of 

I(B). (c) The quadrature amplitudes ܫሺାሻ  (black) and ܫሺିሻ  (pink). The envelope in (b) and the 

quadratures in (c) were extracted by applying the Hilbert transform to the red trace in (b), as 

described in the SM. 

 

 

 

 



 

 

Figure 3. Autocorrelation of the persistent current in a single ring. The blue curve is the 

normalized autocorrelation of the I(B) data from ring #6, while the red curve is a fit to theory. 

Only data with  ∆ܤ ൏ 0.3 was used for the fit. The expected error in the autocorrelation (due to 

the finite size of the data set) is indicated by the dashed horizontal lines. Similar behavior was 

observed in all eight rings. 

 

  



 

Figure 4. The measured distribution of persistent current. (a) Cumulants of the persistent current 

distribution, calculated from the combined data for all eight rings. Blue circles are the measured 

cumulants, and black circles are the cumulants expected for a Gaussian distribution. Black error 

bars: statistical uncertainty from the finite sample size. Blue error bars: statistical uncertainty 

from the finite signal-to-noise ratio. (b) Histogram of the observed persistent currents. To reduce 

oversampling artifacts, the data is first binned to give data points that are approximately 

independent. The solid line is the no-free-parameters prediction.  
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