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We propose and analyze a novel mechanism for long-range spin-spin interactions in diamond
nanostructures. The interactions between electronic spins, associated with nitrogen-vacancy centers
in diamond, are mediated by their coupling via strain to the vibrational mode of a diamond me-
chanical nanoresonator. This coupling results in phonon-mediated effective spin-spin interactions
that can be used to generate squeezed states of a spin ensemble. We show that spin dephasing
and relaxation can be largely suppressed, allowing for substantial spin squeezing under realistic
experimental conditions. Our approach has implications for spin-ensemble magnetometry, as well
as phonon-mediated quantum information processing with spin qubits.

PACS numbers: 07.10.Cm, 71.55.-i, 42.50.Dv

Electronic spins associated with nitrogen-vacancy
(NV) centers in diamond exhibit long coherence times
and optical addressability, motivating extensive research
on NV-based quantum information and sensing applica-
tions. Recent experiments have demonstrated coupling
of NV electronic spins to nuclear spins [1, 2], entangle-
ment with photons [3], as well as single spin [4, 5] and
ensemble [6, 7] magnetometry. An outstanding challenge
is the realization of controlled interactions between sev-
eral NV centers, required for quantum gates or to gener-
ate entangled spin states for quantum-enhanced sensing.
One approach toward this goal is to couple NV centers
to a resonant optical [8, 9] or mechanical [10–12] mode;
this is particularly appealing in light of rapid progress in
the fabrication of diamond nanostructures with improved
optical and mechanical properties [13–17].

In this Letter, we describe a new approach for effec-
tive spin-spin interactions between NV centers based on
strain-induced coupling to a vibrational mode of a dia-
mond resonator. We consider an ensemble of NV cen-
ters embedded in a single crystal diamond nanobeam, as
depicted in Fig. 1a. When the beam flexes, it strains
the diamond lattice which in turn couples directly to
the spin triplet states in the NV electronic ground state
[18, 19]. For a thin beam of length L ∼ 1 µm, this
strain-induced spin-phonon coupling can allow for co-
herent effective spin-spin interactions mediated by vir-
tual phonons. Based on these effective interactions, we
explore the possibility to generate spin squeezing of an
NV ensemble embedded in the nanobeam. We account
for spin dephasing and mechanical dissipation, and de-
scribe how spin echo techniques and mechanical driv-
ing can be used to suppress the dominant decoherence
processes while preserving the coherent spin-spin inter-
actions. Using these techniques we find that significant

spin squeezing can be achieved with realistic experimen-
tal parameters. Our results have implications for NV en-
semble magnetometry, and provide a new route toward
controlled long-range spin-spin interactions.

Model.—The electronic ground state of the negatively
charged NV center is a spin S = 1 triplet with spin states
labeled by |ms = 0,±1〉 as shown in Fig. 1b. In the pres-

ence of external electric and magnetic fields ~E and ~B,
the Hamiltonian for a single NV is (~ = 1) [19]

HNV =(D0 + d‖Ez)S
2
z + µBgs~S · ~B

− d⊥
[
Ex(SxSy + SySx) + Ey(S2

x − S2
y)
]
,

(1)

where D0/2π ' 2.88 GHz is the zero field splitting,
gs ' 2, µB is the Bohr magneton, and d‖ (d⊥) is the
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FIG. 1. (a) All-diamond doubly clamped mechanical res-
onator with an ensemble of embedded NV centers. (b) Spin
triplet states of the NV electronic ground state. Local perpen-
dicular strain induced by beam bending mixes the |±1〉 states.
(c) A collection spins in the two-level subspace {|+1〉 , |−1〉} is
off-resonantly coupled to a common mechanical mode giving
rise to effective spin-spin interactions. (d) Squeezing of the
spin uncertainty distribution of an NV ensemble.
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ground state electric dipole moment in the direction par-
allel (perpendicular) to the NV axis [20, 21].

Motion of the diamond nanoresonator changes the lo-
cal strain at the position of the NV center, which results
in an effective, strain-induced electric field [19]. We are
interested in the near-resonant coupling of a single reso-
nant mode of the nanobeam to the |±1〉 transition of the
NV, with Zeeman splitting ∆B = gsµBBz/~, as shown
in Fig. 1b,c. The perpendicular component of strain
E⊥ mixes the |±1〉 states. For small beam displace-
ments, the strain is linear in its position and we write
E⊥ = E0(a+ a†), where a is the destruction operator of
the resonant mechanical mode of frequency ωm, and E0

is the perpendicular strain resulting from the zero point
motion of the beam. We note that the parallel component
of strain shifts both states |±1〉 relative to |0〉 [22]; how-
ever, with near-resonant coupling ∆ = ∆B − ωm � D0

and preparation in the |±1〉 subspace, the state |0〉 re-
mains unpopulated and parallel strain plays no role in
what follows. Within this two-level subspace, the in-
teraction of each NV is Hi = g

(
σ+
i a+ a†σ−i

)
, where

σ±i = |±1〉i 〈∓1| is the Pauli operator of the ith NV cen-
ter and g is the single phonon coupling strength. For
many NV centers we introduce collective spin operators,
Jz = 1

2

∑
i |1〉i 〈1| − |−1〉i 〈−1| and J± = Jx ± iJy =∑

i σ
±
i , which satisfy the usual angular momentum com-

mutation relations. The total system Hamiltonian can
then be written as

H = ωma
†a+ ∆BJz + g

(
a†J− + aJ+

)
, (2)

which describes a Tavis-Cummings type interaction be-
tween an ensemble of spins and a single mechanical mode
[23]. In Eq. (2) we have assumed uniform coupling of each
spin to the mechanical mode for simplicity; in general the
coupling may be nonuniform. We also assume that the
NVs are sufficiently far apart so that we may safely ig-
nore direct dipole-dipole interactions between the spins.
We discuss these points further below.

To estimate the coupling strength g, we calculate the
strain for a given mechanical mode and use the experi-
mentally obtained stress coupling of 0.03 Hz Pa−1 in the
NV ground state [24, 25]. We take a doubly clamped
diamond beam (see Fig. 1a) with dimensions L � w, h
such that Euler-Bernoulli thin beam elasticity theory is
valid [26]. For NV centers located near the surface of the
beam we obtain [24]

g

2π
≈ 180

(
~

L3w
√
ρE

)1/2

GHz, (3)

where ρ is the mass density and E is the Young’s
modulus of diamond. For a beam of dimensions
(L,w, h) = (1, 0.1, 0.1)µm we obtain a vibrational fre-
quency ωm/2π ∼ 1 GHz and coupling g/2π ∼ 1 kHz.
While this is smaller than the strain coupling ge/2π ≈ 10

MHz expected for electronic excited states of defect cen-
ters [27, 28] or quantum dots [29], we benefit from the
much longer spin coherence time T2 in the ground state.
An important figure of merit is the single spin cooper-

ativity η = g2T2

γn̄th
, where γ = ωm/Q is the mechanical

damping rate and n̄th = (e~ωm/kBT − 1)−1 is the equilib-
rium phonon occupation number at temperature T ; for
example, the condition η > 1 is sufficient to perform a
quantum gate between two spins mediated by a thermal
mechanical mode [10]. Assuming Q = 106, T2 = 10 ms
and T = 4 K, we obtain a single spin cooperativity of
η ∼ 0.8. This can be further increased by reducing the
dimensions of the nanobeam and operating at lower tem-
peratures.

Spin squeezing.—In the dispersive regime, g � ∆ =
∆B − ωm, virtual excitations of the mechanical mode
result in effective interactions between the otherwise de-
coupled spins. In this limit, H can be approximately
diagonalized by the transformation eRHe−R with R =
g
∆

(
a†J− − aJ+

)
. To order (g/∆)2 this yields an effec-

tive Hamiltonian,

Heff = ωma
†a+

(
∆B + λa†a

)
Jz +

λ

2
J+J−, (4)

where λ = 2g2/∆ is the phonon-mediated spin-spin cou-
pling strength. Rewriting J+J− = J2 − J2

z + Jz, and
provided the total angular momentum J is conserved,
we obtain a term ∝ J2

z corresponding to the one-axis
twisting Hamiltonian [30].

To generate a spin squeezed state, we initialize the en-
semble in a coherent spin state (CSS) |ψ0〉 along the
x axis of the collective Bloch sphere. The CSS satis-
fies Jx |ψ0〉 = J |ψ0〉 and has equal transverse variances,〈
J2
y

〉
=
〈
J2
z

〉
= J/2. This can be prepared using opti-

cal pumping and microwave spin manipulation applied
to the ensemble [31]. The squeezing term ∝ J2

z describes
a precession of the collective spin about the z axis at a
rate proportional to Jz, resulting in a shearing of the un-
certainty distribution and a reduced spin variance in one
direction as shown in Fig. 1d. This is quantified by the
squeezing parameter [32, 33],

ξ2 =
2J
〈
∆J2

min

〉
〈Jx〉2

, (5)

where
〈
∆J2

min

〉
= 1

2

(
V+ −

√
V 2
− + V 2

yz

)
is the mini-

mum spin uncertainty with V± =
〈
J2
y ± J2

z

〉
and Vyz =

〈JyJz + JzJy〉 /2. The preparation of a spin squeezed
state, characterized by ξ2 < 1, has direct implications for
NV ensemble magnetometry applications, since it would
enable magnetic field sensing with a precision below the
projection noise limit [32].

We now consider spin squeezing in the presence of real-
istic decoherence. In addition to the coherent dynamics
described by Heff , we account for mechanical dissipation
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and spin dephasing using a master equation [24]

ρ̇ =− i
[
−λ

2
J2
z +

(
∆B + λa†a

)
Jz, ρ

]
+

1

2T2

∑
i

D[σiz]ρ

+ Γγ(n̄th + 1)D[J−] + Γγ n̄thD[J+], (6)

where D[c]ρ = cρc† − 1
2

(
c†cρ+ ρc†c

)
and the single spin

dephasing T−1
2 is assumed to be Markovian for simplic-

ity (see below). Note that we absorbed a shift of λ/2
into ∆B , and ignored single spin relaxation as T1 can
be several minutes at low temperatures [34]. The sec-
ond line describes collective spin relaxation induced by
mechanical dissipation, with Γγ = γg2/∆2. Finally, the
phonon number n = a†a shifts the spin frequency, acting
as an effective fluctuating magnetic field which leads to
additional dephasing.

Let us for the moment ignore fluctuations of the
phonon number n; we address these in detail below.
Starting from the CSS |ψ0〉, we plot the squeezing pa-
rameter in Fig. 2a for an ensemble of N = 100 spins
and several values of n̄th, in the presence of dephasing
T−1

2 and collective relaxation Γγ . Here we calculated ξ2

by solving Eq. (6) using an approximate numerical ap-
proach treating Γγ and T2 separately, and verified that
the approximation agrees with exact results for small N
[24]. To estimate the minimum squeezing, we linearize
the equations of motion for the averages and variances of
the collective spin operators (see dashed lines in Fig. 2a).
From these linearized equations, in the limits of interest,
J � 1, n̄th � 1 and to leading order in both sources of
decoherence, we obtain approximately

ξ2 ' 4Γγ n̄th

Jλ2t
+

t

T2
. (7)

Optimizing t and the detuning ∆, we obtain the optimal
squeezing parameter,

ξ2
opt '

2√
Jη

, (8)

at time topt = T2/
√
Jη, similar to results for atomic sys-

tems [35–37]. Note that for non-Markovian dephasing,
the scaling is even more favorable [38]. In Fig. 2b we
plot the scaling of the squeezing parameter with J for
small but finite decoherence, and find agreement with
Eq. (8). For comparison we also plot the unitary result
in the absence of decoherence, scaling as ξ2

opt ∼ J−2/3

and limited by the Bloch sphere curvature [30].
Phonon number fluctuations.—In Eq. (4) we see that

the phonon number n = a†a couples to Jz, leading to ad-
ditional dephasing due to thermal number fluctuations.
On the other hand, this same coupling can also lead to
additional spin squeezing from cavity feedback, by driv-
ing the mechanical mode [35–37]. In the following, we
consider a twofold approach to mitigate thermal spin de-
phasing while preserving the optimal squeezing. First,

0 0.2 0.4 0.6

0.1

0.5
1

Jλt

ξ
2

n̄th = 0

10

100

10 50 100

0.1

0.5
1

∝ N −0 . 67

∝ N −0 . 50

N

ξ
2 o
p
t

(a) (b)

FIG. 2. (a) Spin squeezing parameter versus scaled precession
time with N = 100 spins. Solid blue lines show the calculated
squeezing parameter for T2 = 10 ms and values of n̄th as
shown. For each curve, we optimized the detuning ∆ to obtain
the optimal squeezing. Blue dashed lines are calculated from
the linearized equations for the spin operator averages. Black
solid (dashed) line shows exact (linearized) unitary squeezing.
(b) Optimal squeezing versus number of spins. Lower (upper)
red line shows power law fit for n̄th = 1 (10) and T2 = 1
(0.01) s. The detuning ∆ is optimized for each point. Other
parameters in both plots are ωm/2π = 1 GHz, g/2π = 1 kHz,
Q = 106.

we apply a sequence of global spin echo control pulses
to suppress dephasing from low-frequency thermal fluc-
tuations. This also extends the effective coherence time
T2 of single NV spins [31]. Second, we consider driving
the mechanical mode, and identify conditions when this
results in a net improvement of the squeezing.

To simultaneously account for thermal dephasing,
driven feedback squeezing, and spin control pulse se-
quences, we write the interaction term in Eq. (4) in the
so-called “toggling frame” [39],

Hint(t) = λJzf(t)δn(t). (9)

The function f(t) periodically inverts the sign of the in-
teraction as shown in the inset of Fig. 3a, describing the
inversion of the collective spin Jz → −Jz with each π
pulse of the spin echo sequence. Phonon number fluctu-
ations are described by δn(t) = n(t) − n̄, where n̄ is the
mean phonon number and we have omitted an average
frequency shift proportional to n̄ in Eq. (9). The num-
ber fluctuation spectrum Sn(ω) =

∫
dteiωt 〈δn(t)δn(0)〉

is plotted in Fig. 3a for a driven oscillator coupled to a
thermal bath [24].

We calculate the required spin moments within the
Gaussian approximation for phonon number fluctuations,
and obtain [24]

〈J+(t)〉 = e−χ
〈
e−iµ(Jz−1/2)J+(0)

〉
, (10)

and similar results for
〈
J2

+(t)
〉

and 〈J+(t)Jz(t)〉. In
Eq. (10) the dephasing parameter χ and effective squeez-
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ing via µ are given by

χ = λ2

∫
dω

2π

F (ωτ)

ω2
S̄n(ω), (11)

µ = λ2

∫
dω

2π

K(ωτ)

ω2
An(ω), (12)

where S̄n(ω) = (Sn(ω) + Sn(−ω)) /2 and An(ω) =
(Sn(ω)− Sn(−ω)) /2. The filter function F (ωτ) =
ω2

2

∣∣∫ dteiωtf(t)
∣∣2 describes the effect of the spin echo

pulse sequence with time τ between π pulses [40–42].
The function K(ωτ) plays the analogous role for the ef-
fective squeezing described by µ, and is related to F by
a Kramers-Kronig relation [24]. We plot K and F for a
sequence of M = 4 pulses in Fig. 3a.

Discussion.—We now consider the impact of thermal
fluctuations on the achievable squeezing. The noise spec-
trum Sn(ω) = 2γn̄th(n̄th + 1)/(ω2 + γ2) is symmetric
around ω = 0. Without spin echo control pulses, this
low frequency noise results in nonexponential decay of
the spin coherence, χ0(t) = 1

2λ
2n̄2

tht
2 (with n̄th � 1),

familiar from single qubit decoherence [31, 43]. The in-
homogeneous thermal dephasing time is T ∗2 '

√
2/λn̄th,

severely limiting the possibility of spin squeezing. In par-
ticular, at time t = topt we find that squeezing is prohib-

ited when n̄th >
√
J [24]. However, one can overcome

this low frequency thermal noise using spin echo. By ap-
plying a sequence of M equally spaced global π-pulses
to the spins during precession of total time t, we obtain
χth ∼ λ2γn̄2

tht
3/M2, suggesting that thermal dephasing

can be made negligible relative to both Γγ and T−1
2 . For

a sufficiently large number of pulses, M � n̄th

√
γT2, we

recover the optimal squeezing in Eqs. (7) and (8).
Adding a mechanical drive can further enhance squeez-

ing via feedback; however, it also increases phonon num-
ber fluctuations, contributing to additional dephasing.
We consider a detuned external drive of frequency ωdr =
ωm + δ, leading to two additional peaks in Sn(ω) at
ω = ±δ, as shown in Fig. 3a. The area under the left
[right] peak scales as n̄drn̄th [n̄dr(n̄th + 1)], where n̄dr

is the mean phonon number due to the drive at zero
temperature. The symmetric and antisymmetric parts
of this noise contribute to dephasing and squeezing as
described by Eqs. (11) and (12). Choosing the inter-
val t/M = 2π/δ between π pulses, we obtain additional

dephasing χdr '
(
λ
δ

)2
n̄drn̄thγt and effective squeezing

with µ ' λ2

δ n̄drt. In the limit n̄dr � n̄th, the effects of
the drive dominate over χth and Γγ and we recover the
ideal scaling given in Eq. (8), even with a small number
of echo pulses. This is shown in Fig. 3b,c where we see
that the optimal squeezing improves with increasing n̄dr

for a fixed number of pulses M = 4.
Finally, we discuss our assumption of uniform coupling

strength g in Eq. (2). This is an important practical is-
sue, as we expect the coupling to individual spins to be
inhomogeneous in experiment due to the spatial variation
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FIG. 3. (a) Number fluctuation spectrum of thermal driven
oscillator. Center (blue) peak is purely thermal while side
(green) peaks are due to detuned drive. Solid (dashed) purple
line shows filter function F (K) for M = 4 pulses. Inset:
corresponding function f(t) for M = 4. (b) Solid green curves
show squeezing parameter versus precession time for n̄th = 10
and n̄dr = 103, 5 × 104, 106 (top to bottom). Dashed black
line shows unitary squeezing. (c) Minimum squeezing versus
drive strength for n̄th = 50, 10 (top to bottom). Symbols
mark corresponding points with (b). Dashed black line shows
unitary squeezing. Parameters in (b) and (c) are M = 4,
g/2π = 1 kHz, T2 = 10 ms, N = 100, ωm/2π = 1 GHz,
Q = 106.

of strain in the beam. Nonetheless, even with nonuni-
form coupling, we still obtain squeezing of a collective
spin with a reduced effective total spin Jeff < J , pro-
vided J � 1. First, we note that inhomogeneous mag-
netic fields resulting in nonuniform detuning are com-
pensated by spin echo. Second, for a distribution of cou-
pling strengths gi, the effective length of the collective
spin is (

∑
i gi)

2
/
∑
i g

2
i for the direct squeezing term, and(∑

i g
2
i

)2
/
∑
i g

4
i for feedback squeezing with a mechani-

cal drive. Similar conclusions were reached in atomic and
nuclear systems [35–37, 44]. In the case of direct squeez-
ing, it is important that the sign of the gi’s is the same
to avoid cancellation; this is automatically achieved by
using NV centers implanted on the top of the beam. For
beam dimensions (1, 0.1, 0.1)µm analyzed above, we esti-
mate that N ∼ 200 NV centers can be embedded without
being perturbed by direct magnetic dipole-dipole interac-
tions. A reduction of the effective spin length by factor
∼ 2 still leaves Neff ∼ 100, sufficient to observe spin
squeezing.

Conclusions.—We have shown that direct spin-phonon
coupling in diamond can be used to prepare spin squeezed
states of an NV ensemble embedded in a nanoresonator,
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even in the presence of dephasing and mechanical dissi-
pation. With further reductions in temperature, beam
dimensions, and spin decoherence rates, the regime of
large single spin cooperativity η � 1 could be achieved.
This would allow for coherent phonon-mediated interac-
tions and quantum gates between two spins embedded
in the same resonator via Hint = λ

(
σ+

1 σ
−
2 + h.c.

)
, and

coupling over larger distances by phononic channels [27].
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