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We introduce a new platform for quantum simulation of many-body systems based on nonspherical
atoms or molecules with zero dipole moment but possessing a significant value of electric quadrupole
moment. We consider a quadrupolar Fermi gas trapped in a 2D square optical lattice, and show
that the peculiar symmetry and broad tunability of the quadrupole-quadrupole interaction results
in a rich phase diagram encompassing unconventional BCS and charge density wave phases, and
opens up a perspective to create topological superfluid. Quadrupolar species, such as metastable
alkaline-earth atoms and homonuclear molecules, are stable against chemical reactions and collapse
and are readily available in experiment at high densities.

PACS numbers: 67.85.-d, 75.30.Fv, 71.10.Fd

Quantum gases of ultracold atoms have provided
a fresh perspective on strongly-correlated many-body
states, by establishing a highly tunable environment in
which both open questions of solid state physics and
novel, previously unobserved, many-body states can be
studied [1]. An important landmark was reached by cool-
ing and trapping dipolar atoms and molecules, bosonic
and fermionic [2–7], near or into quantum degeneracy,
which extended the range of features available to quan-
tum simulation in ultracold atom systems beyond con-
tact interactions. Numerous exotic states such as su-
persolids, quantum liquid crystals and bond-order solids
have been predicted, extended Hubbard models with 3-
body interactions, and highly tunable lattice spin models
for quantum magnetism have been proposed [8–13]. The
crucial feature of the interactions in dipolar gases is their
anisotropic and long-range character tunable with static
and radiative fields [13–15], which is key to the intriguing
many-body effects that have been predicted.

In this Letter we propose to study quadrupolar quan-
tum gases. This constitutes a new class of systems in ul-
tracold physics, which can be used as a platform for quan-
tum simulation. Quadrupole interactions are most visible
for non-polar particles which possess a significant elec-
tric quadrupole moment. The angular dependence of the
resulting quadrupole-quadrupole interaction is substan-
tially different compared to the dipole-dipole one, due
to the higher-order symmetry. For atoms or molecules
in an optical lattice, this allows for broad tunability of
the nearest and next-nearest neighbor couplings. As a
concrete example, we discuss metastable alkaline-earth
atoms and homonuclear molecules which have compara-
tively large quadrupolar moments. In order to demon-
strate rich many-body effects that arise in ensembles of
such particles, we derive the quantum phase diagram
of a quadrupolar fermionic gas in an optical lattice at

half-filling. We find that several unconventional phases
emerge, such as bond order solids and p-wave pairing,
and discover the intriguing possibility of creating topo-
logical ground states of px+ipy symmetry. While dipolar
quantum gases were also shown to host novel many-body
phases, quadrupolar particles are available in experiment
at higher densities and are stable against chemical reac-
tions [16] and collapse [17].

In order to determine the quadrupole-quadrupole in-
teraction energy, we consider the potential of a classical
quadrupole with moment q =

∫

ρ(~r)r2(3 cos2 θ− 1)d~r lo-

cated at ~r0 = 0 aligned in k̂-direction. Here ρ(~r) is the

electron charge density and cos θ ≡ k̂ · r̂ [46]. In this work
we focus on systems possessing cylindrical symmetry, for
which only one component q of the quadrupole moment
tensor qij is nonzero. The electric field potential gener-
ated by the quadrupole is given by φ(~r) = q

4r3 (3 cos
2 θ −

1). If a second quadrupole with the same alignment k̂ is
placed at location ~r, the resulting interaction energy is

FIG. 1: Recipe for realization of quadrupolar particles:
(a) with alkaline-earth atoms in long-living 3P2 levels; and
(b) with homonuclear molecules in rotational states with
J > 0. (c) Angular “shape” of quadrupolar particles exem-
plified by |2,M〉 states.
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V qq
cl = q

4 (k̂ · ∇)(k̂ · ∇φ) = 3q2

16r5 (35 cos
4 θ − 30 cos2 θ + 3).

While the functional form of this potential carries over
to the quantum description, the prefactor of the inter-
action for two states has to be obtained via a quantum
definition of the quadrupole moment q2. The latter is
a spherical tensor of rank two with components defined
in atomic units as q2,M = −

∑

k r
2
kC2,M (θk, φk), where

(rk, θk, φk) give the coordinates of the k-th electron of
the particle, and C2,M (θk, φk) =

√

4π/5Y2,M (θk, φk) are
the reduced spherical harmonics [18]. In the angular mo-
mentum basis, |J,M〉, with M being the projection of the
angular momentum, J, onto the quantization axis, the
quadrupole operator couples the states with ∆J = 0,±2,
so to first order any state with J > 1/2 possesses a
nonzero quadrupole moment [47]. Thus the value of the
quadrupole moment can be controlled by preparing the
particles in a particular |J,M〉-state, or their combina-
tion, using optical or microwave fields. The quadrupole
interaction reads

V qq =

√
70

r5

2
∑

α=−2

(−1)αC2,−α(θ, φ)[q
(1)
2 ⊗ q

(2)
2 ]4,α, (1)

where (r, θ, φ) gives the vector between particles, and

[q
(1)
2 ⊗ q

(2)
2 ]4,α is a spherical tensor of rank four formed

from two quadrupole moments. For both particles pre-
pared in the same |J,M〉 state, Eq. (1) reduces to V qq =
V (3 − 30 cos2 θ + 35 cos4 θ)/r5, with V = q23(J2 + J −
3M2)2/[4(4J2 + 4J − 3)2], where q = 2〈2, 2|q2,0|2, 2〉,
which coincides with the classical definition [19]. We note
that in the classical limit of J → ∞, and for M = J , the
prefactor V = 3q2/16 of the classical expression is recov-
ered. The interaction can then be attractive or repulsive
depending on the angle θ.
Among the particles for which the quadrupolar mo-

ment is known, the most promising candidates for the
experimental realization of quadrupolar quantum gases
are metastable alkaline-earth atoms [19–23] and homonu-
clear diatomic molecules [24, 25]. Alkaline-earth atoms,
such as Sr, and some of the rare-earth atoms, such as Yb,
can be prepared in metastable 3P o

2 states, whose lifetime
exceeds thousands of seconds [19–23, 26], by optical ex-
citation, cf. Fig. 1 (a). Both bosonic and fermionic iso-
topes of Sr and Yb have been brought to quantum degen-
eracy [27–30]. Ultracold homonuclear molecules, such as
Cs2 or Sr2, can be prepared in the absolute ground state,
1Σ+

g (v = 0, J = 0), and then transferred to a rotational
state with J > 0, using a Raman transition [24, 25, 31],
cf. Fig. 1 (b). While homonuclear molecules are always
bosons, fermionic quadrupolar molecules can be prepared
using distinct isotopes of the same species [32]. For both
atoms and molecules the degeneracy of a particular J
level can be lifted by an external electric or magnetic
field, F. We consider the regime when the quadrupole-
quadrupole interactions dominate the behavior of the sys-
tem, i.e. the electric field F is too weak to induce a sub-

stantial value of a dipole moment, or the particles are
prepared in a non-magnetic Zeeman component. The
typical “shapes” of quadrupolar states are exemplified in
Fig. 1 (c). Both atoms and molecules can be prepared in
the |2, 0〉 (|2, 2〉) states using two linearly (circularly) po-
larized photons; the quadrupole-quadrupole interaction
is equal in these cases and is larger than for the |2, 1〉
states.
The quadrupole moments for metastable alkaline-earth

atoms and homonuclear molecules are similarly on the
order of 10–40 a.u. [19–23, 25], which gives an interac-
tion strength, V qq, on the order of a few Hz at 266 nm
lattice spacing. Furthermore, interactions on the order
of 1 kHz can be achieved for 100 nm lattice spacings
realizable with atoms trapped in nanoplasmonic struc-
tures [33]. We note that the dispersion (van der Waals)
interaction, V dis ∼ r−6, is 102−103 times smaller at typi-
cal optical lattice spacings [21], therefore the quadrupole-
quadrupole interaction dominates the physics of these
systems. Quantum gases can be trapped for tens of sec-
onds, so the observation of many-body phases generated
by these interactions is feasible via the standard tech-
niques, ranging from time-of-flight detection to noise cor-
relation and Bragg spectroscopy.
To illustrate the intriguing many-body effects that can

arise in these systems, we investigate the quantum phase
diagram of a system of interacting quadrupolar fermions
on a square lattice, at half-filling. We assume every par-
ticle to be prepared in state |J,M〉, where J is the elec-
tronic (for atoms) or rotational (for molecules) angular
momentum, and M is the projection of J on the direc-
tion F̂ = (θF , φF ) in the laboratory frame given by the
external field F used to lift the M -degeneracy. The par-
ticles are confined to a lattice with a lattice constant aL,
corresponding to the Hamiltonian:

H = −t
∑

〈i,j〉

c†i cj +
1

2

∑

i6=j

Vijc
†
i cic

†
jcj , (2)

where t represents the nearest-neighbor hopping and
ci is the fermion annihilation operator at the i-th lat-
tice site. Throughout the remainder of the paper, we
use aL as a unit of length and t as a unit of energy.
As schematically shown in Fig. 2 (a), the interaction
strength Vij depends on the orientation of the vector
connecting the quadrupoles, r = ri − rj , relative to

the field direction, F̂ , via Vr ≡ Vij = 〈ij|V qq|ij〉 =

V [3−30(r̂·F̂ )2+35(r̂·F̂ )4]/r5. Thus, one can immediately
observe that the interaction between two quadrupoles
can be tuned either attractive or repulsive, by chang-
ing the orientation of the external field F. Fig. 2 (b)
shows the (θF , φF )-dependence of the interaction matrix
element between the nearest- and next-nearest neigh-
bors. The richness of the quadrupolar interaction be-
comes apparent in this figure. There are several regions
in which the signs and the relative magnitudes of {Vx̂,
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FIG. 2: (a) Schematic representation of quadrupolar fermions
on a square lattice. Alignment of the quadrupoles is given by
the quantization axis of the external field F, pointing along
F̂ = (θF , φF ). The nearest-neighbor interaction is repre-
sented by green and red solid lines, while the next-nearest
neighbor interaction is shown in blue. (b) 3D plot showing
the interactions Vx̂ (red), Vŷ (green), and Vx̂+ŷ (blue) as a
function of the angles (θF , φF ); “∗” marks the point in the
vicinity of which both Vx̂,ŷ and Vx̂+ŷ change the sign.

Vŷ, Vx̂+ŷ} show distinctive characteristics. For exam-
ple, in the region (θF . 25◦, 0◦ ≤ φF ≤ 45◦), both
nearest- and next-nearest neighbor interactions are re-
pulsive, while they all become attractive in the region
(30◦ . θF . 60◦, φF ∼ 45◦). Furthermore, one can iden-
tify finite regions where either one or two of {Vx̂, Vŷ,
Vx̂+ŷ} is attractive while the rest is repulsive.

Interactions of opposite sign can result in competition
between quantum phases of different symmetry, resulting
in frustration. Thus, fermions with dominant quadrupo-
lar interactions provide an interesting setup for studying
many-body physics with competing phases. For exam-
ple, in the vicinity of (90◦, 45◦) both Vx̂ and Vŷ are at-
tractive, while Vx̂+ŷ is repulsive (see Fig. 2). On gen-
eral grounds, one would expect a BCS type ground state
resulting from condensation of Cooper pairs due to the
attractive Vx̂ and Vŷ couplings. However, the repulsive
Vx̂+ŷ interaction, if significant, may lead to the insur-
gence of some other phase, and therefore needs to be

quantitatively accounted for. As another intriguing ex-
ample, in the vicinity of (40◦, 5◦), Vx̂ is strongly attrac-
tive while Vŷ is strongly repulsive. As we show below,
the ground state in this region is neither a BCS state nor
conventional charge density wave (CDW). These two ex-
amples show that the actual ground state may be of an
unexpected nature. Exposing the true ground state thus
demands a theory that is (i) unbiased with respect to the
initial ansatz, and (ii) includes fluctuations.

Issue (ii) can be adequately addressed within the renor-
malization group (RG) analysis at weak couplings, where
the low energy physics near the Fermi surface is extracted
by successively integrating out the high energy degrees of
freedom [34]. In order to satisfy criterion (i), we employ
the exact (or “functional”) renormalization group (FRG)
which keeps track of all the interaction vertices, includ-
ing both the particle-particle and particle-hole channels,
and treats all instabilities on equal footing [35][48].

The FRG phase diagram, Fig. 3 (a), features several
different kinds of BCS and CDW phases with symmetry
indicated by the the polar plots of Fig. 3 (b). CDWs is
a CDW phase with a checkerboard modulation of on-site
densities, occurring in regions where the repulsive inter-
action between nearest neighbors dominates, see Fig. 2.
This happens for all values of φF when θF . 25◦, and
also for φF . 22◦ at large θF & 60◦. In addition, two
novel types, CDWpx

and CDWpy
, are present. They cor-

respond to a checkerboard modulation of the effective
hopping between nearest neighbors along the x and y
direction respectively, i.e., 〈c†i cj〉 with ri − rj = x̂ or ŷ,
with the average taken over the many-body ground state.
We refer to these phases as to bond order solids (BOS).
In comparison, the s-wave CDW order corresponds to
modulations of 〈c+i ci〉. Furthermore, we find a small re-
gion of CDWs+d that involves a mixture of extended s-
and d-waves. Together they give rise to a checkerboard
modulation of effective hopping between the next-nearest
neighbor sites. The CDWpx

, CDWpy
, and CDWs+d can

be thought of as a 2D generalization of the bond-order-
wave phase occurring in the extended Hubbard model in
one dimension [36–38]. While BOS is expected for dipo-
lar fermions in 2D [12], it occupies a significantly larger
region of the parameter space for quadrupolar interac-
tions (e.g., it is stabilized as soon as θF approaches 25◦).
Moreover, the angular dependence of quadrupolar inter-
actions is substantially more complex, resulting in two
BOS phases of py and px symmetries, appearing at small
and large θF , respectively. Interestingly, these two phases
occur in the regions where Vx̂ and Vŷ are comparable in
magnitude but opposite in sign, i.e., CDWpx(py) is stabi-
lized when Vx̂(ŷ) is repulsive while Vŷ(x̂) is attractive, cf.
Fig. 2 (b). Thus, quadrupolar Fermi gases are well suited
for exploring the properties of nonzero angular momen-
tum (i.e. unconventional) density wave phases.

Finally there are two BCS phases, which mostly occur
where both Vx̂ and Vŷ are attractive. Our FRG analy-
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FIG. 3: Quantum phase diagram for quadrupolar fermions on a square lattice. (a) FRG phase diagram in the weak coupling

limit, V/t = 0.2, and at half filling shown as a function of the magnetic field direction F̂ = (θF , φF ). The point marked by “∗”,
where 5 different phases seem to meet, corresponds to Vx̂, Vŷ, Vx̂+ŷ ≈ 0 as shown in Fig. 2 (b). This suggests the likelihood of
atmost three distinct tri-critical points in close proximity to each other, which are hard to resolve due to the smallness of the
couplings. (b) The orbital symmetry of the CDW and BCS phases shown in (a) is plotted in red. This symmetry corresponds
to the symmetry of the most divergent eigenvector of the BCS and CDW vertices combined. The px (py) wave CDW has the
same orbital structure as the px (py) wave BCS.

sis shows that the BCS phase can be stable even though
the next-nearest neighbor interaction is weakly repulsive.
We find that the symmetry of the BCS order parameter
is px or py, depending on whether Vx̂ or Vŷ is more attrac-
tive. Along the line of θF ∼ 65◦ these two BCS phases
are degenerate. This raises the possibility of realizing
px + ipy topological superfluid order. By analogy with
the proposal of Ref. [39], using an AC field to periodi-
cally modulate the direction of (θF , φF ), one can lift the
degeneracy and engineer the chiral px + ipy state.

In conclusion, we have shown that ultracold Fermi
gases with quadrupole-quadrupole interactions can be
used to study unconventional BCS, CDW, and topologi-
cal phases, and gain insight into the physics of compet-
ing ground states. While we have focused on the specific
case of a square lattice at half-filling, the functional RG
methods of this work can be applied to study other fillings
and lattice geometries. Temperatures achieved for degen-
erate Fermi gases of alkaline-earth atoms in experiment
are T = 0.26 TF and T = 0.37 TF respectively [29, 30].
The optimal Tc for the CDW and BCS phases predicted
here is estimated to be on the order of 0.03 TF , for inter-
mediate couplings, V ∼ t. Thus these many-body phases
seem to be within experimental reach in the near future.

Since quadrupolar interactions occur in numerous sub-
fields of physics, from molecular photofragmentation [40]
and structure of f -electron compounds [41] to nuclear
reactions [42] and gravitation of black holes [43], the
proposed quantum simulation platform can in principle
be applied beyond the many-body physics of fermionic

gases. Finally, we note that ground-state atoms can be
provided with significant quadrupole moments by means
of Rydberg dressing, i.e. admixing a highly-excited elec-
tronic state possessing a large quadrupole moment with
far-detuned laser light [44, 45].
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B. Neyenhuis, G. Quéméner, P. S. Julienne, J. L. Bohn,
D. S. Jin, and J. Ye, Science 327, 853 (2010).

[17] T. Koch, T. Lahaye, J. Metz, B. Fröhlich, A. Griesmaier,
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