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Abstract

Electron response in an intense laser is studied in the regime where the electron temperature

is relativistic. Equations for laser envelope and plasma density evolution, both in the electron

plasma wave and ion acoustic wave regimes, are re-derived from the relativistic fluid equations

to include relativistic plasma temperature effect. These equations are used to study short-pulse

and long-pulse laser hosing instabilities using a variational method approach. The analysis shows

that relativistic electron temperatures reduce the hosing growth rates and shift the fastest-growing

modes to longer wavelengths. These results resolve a long-standing discrepancy between previous

non-relativistic theory and simulations/experiments on hosing.
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Previous studies in intense short-pulse laser-plasma interactions discovered many inter-

esting phenomena rooted in relativistic electron oscillation velocities, including relativistic

self-focusing[1, 2], ponderomotive plasma blowout[2, 3], and mutual interactions between

laser beams in a plasma[4, 5]. Analyses of these phenomena assumed electrons’ thermal

energy small compared to their oscillation energy and adopted a cold plasma approach.

Recently-available kJ-class short-pulse lasers have not only the intensity to make electrons

oscillate at relativistic speeds but also the energy to heat these electrons to relativistic

temperatures. In recent Particle-in-Cell (PIC) simulations of kJ-class laser channeling in

mm-scale underdense plasmas for fast ignition the residual electron temperature Te in the

channel was found to be multi-MeV [6, 7]. Relativistic Te was also observed in PIC sim-

ulations with sub-ps intense pulses of energy as low as 10J[3]. Relativistic Te can reduce

the electron oscillation velocity and decouple the laser from the plasma[3, 6, 7]. However,

how relativistic Te affects a wide range of plasma optical phenomena in intense laser-plasma

interactions remains largely unexplored.

In this Letter, we will show that relativistic Te can significantly affect laser hosing[8–12],

an instability important to both laser wake field accelerators (LWFA) [13] and fast ignition

(FI) [14]. Hosing affects laser propagation and wake field generation in LWFA. LWFA-

relevant hosing is in the short-pulse regime, mediated by electron plasma waves[8–11]. In the

channeling/hole-boring scheme of FI, the channeling pulse can also suffer hosing instability,

causing channel bending and bifurcation [6, 7]. Hosing in this long-pulse regime involves

ion motion and is mediated by the ion acoustic waves[12]. However, there is a long-standing

discrepancy on the wavelengths of the dominant hosing modes between the existing theory

and PIC simulations/experiments. In the short-pulse regime, the hosing modes observed

in the PIC simulations [10] had wavelengths 2-10 times longer than that predicted by the

cold plasma theory [8, 9] for the fastest-growing mode. The predicted fastest-growing mode

at the plasma wavelength was never observed in the simulations. The lack of such modes

was attributed to the interference of Raman instabilities and the suppression of the plasma

wave due to plasma heating [10] but no quantitative theory was given. In one reported

experimental observation of laser hosing [15], the observed hosing wavelengths were also

much longer than predicted by the short-pulse theory. The discrepancy was speculated

due to ion motion. As will be shown in this Letter, long-pulse hosing theory including

the ion motion but assuming a non-relativistic Te still predicts a fastest-growing mode at a
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much shorter wavelength than observed. Similar discrepancy also exists between the theory

and the channeling simulations[6, 7]. In addition, some hosing-like structures observed in

laser-plasma experiments, also with wavelengths longer than what predicted by the existing

theory, were attributed to surface waves [16] or asymmetry laser transverse profile [17].

The discrepancies between the predicted and observed hosing wavelengths can be resolved

by properly treating the electron temperature effects in the relativistic regime. From the

full relativistic fluid theory, we will re-derive the coupled equations of laser envelope and

plasma density in the relativistic Te regime. Analyses of these equations using a variational

method show that as Te becomes relativistic the dominant hosing modes shift to longer

wavelengths for both short- and long-pulse modes, agreeing with the experiments and PIC

simulations. The derived equations also lay the basis for studying other nonlinear plasma

optical phenomena in the relativistic Te regime[18, 19].

From the relativistic Vlasov equation a fully relativistic fluid theory had been

developed[20, 21]. Here we restrict ourselves to a locally isotropic particle distribution

f . The resultant pressure tensor Θij = m
∫

f(U i − 〈U i〉)(U j − 〈U j〉)/γ d3U is diagonal with

Θ11 = Θ22 = Θ33 ≡ p. Here U i (i = 1, 2, 3) are the components of the momentum (per unit

mass) vector U, γ =
√

1 +U ·U/c2, c the speed of light, m the particle mass, and 〈U〉 is

the fluid momentum, 〈U i〉 = (
∫

fU i/γ d3U)/(
∫

f/γ d3U).

For the locally isotropic f , the relativistic fluid momentum equation [Eq. (85) in Ref.[21]]

can be written as

mn(
∂

∂t
+ v · ∇)[Γαv] = nF−∇p, (1)

where v is the fluid velocity, Γ = 1/
√

1− v · v/c2 is the relativistic factor from the fluid

velocity, n =
∫

f d3U is the particle density, and F = q(E+v×B/c) is the Lorentz force per

particle. The thermal parameter α represents relativistic mass increase from the random

motion of the particles and is defined as α = (p+ ē)/(n̄mc2), where ē = mc2
∫

γ̄f d3Ū is the

internal energy density in the local rest frame (which moves relative to the lab frame with

v) and n̄ = n/Γ is the particle density in the local rest frame. Different but equivalent forms

of Eq. (1) have also been derived based on the invariance of the momentum-energy tensor

[3, 22, 23]. Equation 1 shows that the total relativistic factor of a fluid element is Γα.

For a cold species, p = 0, ē = n̄mc2 and α = 1. As the particles become hotter α increases,

but significant deviation from 1 occurs only when the particles are relativistically hot. In
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Figure 1 α’s from two common distributions are plotted. One is from a non-relativistic

Maxwellian distribution fM = n̄(2πU2
th)

−3/2 exp (−U2/2U2
th) and the other is from a rela-

tivistic Maxwell-Juttner distribution fMJ = n̄[4πcU2
thK(2, c2/U2

th)]
−1 exp(−c

√
c2 + U2/U2

th),

where K is the modified Bessel function of the second kind. For same Uth, fMJ gives a much

larger α than fM when Uth/c > 1. For the Maxwell-Juttner distribution, when Uth/c = 1,

the thermal energy ē − n̄mc2 = 1.2 MeV and α = 4.4 for electrons. For ions, α = 1 is a

good approximation for sub-GeV thermal energies.

As an initial study on laser propagation in a relativistically hot plasma we focus on the

simple case of a uniform and constant α. The high frequency electron quiver velocity in

the laser field can be found from Eq. 1[3], vos/c ≈ a/(αΓ), where a = eA/mec
2 is the

normalized laser vector potential. For weakly nonlinear cases with |a| < 1 or relativistically

hot electrons with |a| > 1 but |a|/α < 1, the time-averaged fluid Γ can be approximated as

Γ ≈ 1+a2/(4α2), where a is the envelope of a. Under these approximations the widely-used

laser envelope equation[24] becomes

(c2∇2
⊥ + 2ikLc

∂

∂τ
+ 2

∂2

∂ψ∂τ
)a = ω2

p0(1 + δn− |a|2
4α2

)
a

α
, (2)

in terms of the ”speed of light variables” τ = x/c and ψ = t − x/c. Here kL is the

laser wavenumber, δn = n/n0 − 1 is the normalized electron density change and ωp0 =

(4πn0e
2/me)

1/2 is the plasma frequency.

In the short-pulse regime, the equation for δn [24] becomes [25],

(α
∂2

∂ψ2
+ ω2

p0 −
γpTe
me

∇2)δn =
c2

α
∇2 |a|2

4
. (3)

Here, Te ≡ meU
2
th is the electron temperature and the adiabatic constant γp = 5/3 is the

same as in the non-relativistic case. In the long pulse regime, δn follows the ion density

perturbation described by the ion acoustic equation[12], which becomes [25]

(
∂2

∂ψ2
− C2

s∇2)δn =
Zme

mi

c2

α
∇2 |a|2

4
, (4)

where Cs =
√

(ZTe + Ti)/mi is the ion sound speed. Setting α = 1, Eqs.2-4 recover the

usual non-relativistic equations that were widely used in the study of nonlinear plasma

optics [12, 24]. With α, they are for the first time extended to the regime of relativistic Te.

We now show how the dominant hosing modes change as α increases. We use a variational

method [12, 26, 27] to derive dispersion relations of hosing instabilities from the relevant
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equations. For the α = 1 case, Duda et al. demonstrated the feasibility of the variational

approach for short-pulse hosing, including the dispersive term (the mixed derivative term in

Eq.2) [27], and long-pulse hosing without the dispersive term [12]. We have extended the

analysis to α > 1.

We start with the long pulse hosing. Typical hosing wavenumbers in this regime are

expected to be k ∼ ωpi/c where ωpi is the ion plasma frequency ωpi =
√

4πne2/mi. For

typical laser and plasma parameters in, for example, laser channeling in fast ignition[6, 7],

longitudinal variation is much smaller than transverse variations and ∇2 can be approxi-

mated by ∇2
⊥ in Eqs. 2 and 4. Also the dispersive term in Eq. 2 can be neglected, which

has been confirmed by analysis including this term [25]. To find a Lagrangian density L for

which the Euler-Lagrangian equations when varying the action S =
∫

dydzdψdτL are Eqs.

(2) and (4), we introduce a new potential φ [12], ∇2
⊥φ = 1 + δn. The envelope and density

equations written in φ and a are now

(∇2
⊥ + 2ik̂L

∂

∂τ̂
− 1

α
∇2

⊥φ+
|a|2
4α3

)a = 0, (5)

∇2
⊥[(

∂2

∂ψ̂2
− c2s∇2

⊥)φ− Zme

mi

|a|2
4α

] = 0, (6)

where the quantities with a caret are space and time scales normalized to c/ωp0 or 1/ωp0

and cs is Cs normalized to c. The Lagrangian density then is

L = Zme

mi
[∇⊥a∇⊥a

∗ + ik̂L(a∂τ̂a
∗ − a∗∂τ̂a)− 1

α
∇⊥|a|2∇⊥φ− |a|4

8α3 ]

−2(∇⊥∂ψ̂φ)
2 + 2c2s(∇2

⊥φ)
2, (7)

which recovers Eqs. (5) and (6) if varying with respect to a, a∗ and φ. Gaussian trial

functions are chosen for a and φ,

a = a0e
iχeiky ỹaeikz z̃ae−[1−iαy ]ỹ2a/w

2
yae−[1−iαz ]z̃2a/w

2
za, (8)

φ = Φe−2[ỹ2
φ
/w2

yφ
+z̃2

φ
/w2

zφ
]. (9)

Here, ỹa = y − ya(ψ̂, τ̂ ) and ỹφ = y − yφ(ψ̂, τ̂), where ya and yφ are the centroids of a and φ

respectively; a0e
iχ is the complex amplitude of a and Φ is the amplitude of φ; wya and wyφ

are the spot sizes of a and φ respectively; ky and αy are the wavenumber and wave front

curvature of a respectively. The quantities z̃a, z̃φ, wza, wzφ, kz and αz are similarly defined.

All these parameters are functions of ψ̂ and τ̂ . Substituting the trial functions into Eq. (7)
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and performing the integration over y and z yield a reduced Lagrangian density, for which

the Euler-Lagrangian equations are a set of equations for the trial function parameters. A

matched beam equilibrium solution (∂τ̂ = 0), where the laser spot sizes remain constant and

the centroids remain straight (ya = yφ = 0 and za = zφ = 0), can be found. Perturbing this

equilibrium yields the hosing equation (the derivations are similar to those in [27])

∂2τ̂ ya1 + Ω1ya1 = Ω1yφ1, (10)

∂2
ψ̂
yφ1 + Ω2yφ1 = Ω2ya1, (11)

where

Ω1 =
27

256

Zme

mi

P0

α2c2sk̂
2
Lŵ

4
0

,Ω2 = 4
c2s
ŵ2

0

. (12)

Here P0 = a20ŵ
2
0 is the dimensionless laser power and ŵ0 the normalized spot size. The

centroid equations of za1 and zφ1 are similar to Eq. (10) and (11), with y changed to z. The

motions of the centroids in y and z are not coupled.

Assuming (ya1, yφ1) ∼ ei(k̂x̂−ω̂t̂), a dispersion relation is obtained from Eqs. (10) and (11)

ω̂4 − 2k̂ω̂3 + (k̂2 − Ω1 − Ω2)ω̂
2 + 2Ω2k̂ω̂ − Ω2k̂

2 = 0. (13)

Here, k̂ is real and ω̂ is complex, and hosing growth rates are the imaginary part of ω̂.

Figure 2(a) plots growth rates vs. k̂ from Eq. 13 for a case of a0 = 0.53, ŵ0 = 9, k̂L =

10, cs = 0.02. For a laser of 1µm-wavelength in a DT-plasma (Zme/mi = 1/4590), they

correspond to a laser intensity of 0.4 × 1018 W/cm2 and a plasma with n = 1019 cm−3

and Te = 1 MeV, which gives α = 8.17 (for fMJ). Comparing with the α = 1 case, a

relativistic Te significantly reduces hosing growth rates and also shifts the fastest-growing

mode to a longer wavelength. Figure 2(b) plots the wavenumber k̂M and growth rate γ̂M

of the fastest growing mode as a function of Te, with α calculated from fMJ . It shows that

k̂M first decreases steeply and then increases slowly as Te increases. And γ̂M first increases,

due to the increase of the plasma pressure, and then decreases due to the relativistic effects.

Analysis of Eq. 13 shows that the growth rate peaks when k̂2 ≈ Ω1 + Ω2. For non-

relativistic Te, cs is very small and Ω1 ≫ Ω2 (see Eq.12). In this limit k̂M and γ̂M are k̂
(lc)
M =

√

(27/256)(Zme/mi)a0/(αcsk̂Lŵ0), γ̂
(lc)
M = (0.75/ŵ0)(Zme/mi)

1/6[csa0/(αk̂L)]
1/3. Eventually

the increase of α saturates γ̂
(lc)
M . For a relativistically hot plasma, cs and α increase so that
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Ω1 ≪ Ω2. In this limit k̂M and γ̂M are

k̂
(lh)
M ≈

√

Ω2 = 2
cs
ŵ0

, (14)

γ̂
(lh)
M =

√
3

2
(
Ω1

2
)
1

3Ω
1

6

2 =
0.41

ŵ0

(
Zme

mi

)
1

3 (
a20

csα2k̂2L
)
1

3 . (15)

These asymptotic expressions fit well with the numerical solution in Fig. 2(b).

For short-pulse hosing, the density equation Eq.3 has a new electron pressure term

(γpTe/me)∇2δn compared to the previous work [27]. Analysis [25] shows that the ∇2
⊥

part of this term gives only a small correction for the usual case of ŵ0 > 1. The

∇2
|| part poses a difficulty for the variational analysis. Here we study the regime of

α ≫ γpTe/mec
2, which is fully met in a cold or warm plasma and is approximately

met in a relativistically hot plasma, to focus on the effects of α > 1. In addition, the

dispersive term in Eq. 2 mainly reduces the growth rates of the small-k modes and

does not affect the k of the dominant mode [25]. Here, we present the non-dispersive

case. Introducing a new potential φ = |a|2/4α2 − δn leads to a Lagrangian density of

L = (1/α)[∇⊥a∇⊥a
∗+ ik̂L(a∂τ̂a

∗−a∗∂τ̂a)−φ|a|2/α+ |a|2/α]−2α(∂ψ̂φ)
2+2φ2. With Gaus-

sian trial functions in Eqs. 8 and 9, a variational analysis leads to a set of equations that are

identical to Eqs. 10 and 11 with Ω1,2 replaced by Ω
(sp)
1 = P0/(8α

3k̂2Lŵ
4
0) and Ω

(sp)
2 = 1/α.

The dispersion relation has the same form as Eq. 13. Typical γ̂-k̂ curves, as shown in

Fig. 2(c) for a case in Ref.[10] with a0 = 2, ŵ0 = 15, k̂L = 8.5, show the existence of long

wavelength modes [27] but also the shift of the dominant mode to longer wavelengths. In

general, Ω
(sp)
1 /Ω

(sp)
2 = a20/(8α

2k̂2Lŵ
2
0) ≪ 1, except for extremely high laser intensities or small

spot sizes. Therefore, similar to Eqs.14-15,

k̂
(sp)
M ≈ 1√

α
, (16)

γ̂
(sp)
M =

0.34

α
7

6

(
a0

k̂Lŵ0

)
2

3 . (17)

The α-dependence clearly show that k̂
(sp)
M and γ̂

(sp)
M decrease as Te increases. The analytical

results of Eqs.16-17 agree well with the full numerical solution of Eq.13 [Fig. 2(d)]. When

Te = 1 MeV, the dominant hosing wavelength increases to approximately 3 times of the

plasma wavelength.

In one experimental observation of laser hosing by Najmudin et al [15], all observed hosing

instability fell in a long wavelength region, with no hosing structures of wavelengths shorter
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than 200 µm observed. Figure 3(a) shows that for the experimental parameters a0 = 2.68,

w0 = 8.7 µm, ne = 2.3 × 1019 /cm3 and Zme/mi = 1/3672, the maximum growth from

the long-pulse hosing theory occurs at λh = 30 µm for Te = 1 keV. The theory predicts

that the maximum growth occurs at λh = 287 µm and 1044 µm for Te = 100 keV and

1 MeV respectively. This clearly indicates the importance of plasma heating. Recent 3D

PIC simulations of laser channeling observed hosing simultaneously in the two transverse

directions[7]. In one simulation, a laser with an initial a0 = 2.68 and w0 = 90/kL propagated

in a DT-plasma with an exponentially rising density profile of n0 = 0.1 − 0.3nc. The

channeling process was dynamic, including laser self-focusing and significant plasma density

modification. The electrons were heated from an initial Te = 1 keV to a final Te ≈ 6.5

MeV. The hosing growth rates of the dominant mode in the simulation are measured and

plotted together with the long-pulse theoretical curves in Figure 3(b). The theoretical curves

are calculated for two Te’s, 100 keV and 1 MeV, with constant parameters of n0 = 0.2nc,

a0 = 5.36, w0 = 45/kL, accounting for laser self-focusing. Given the differences between the

simulation and the theory, the agreement is reasonable. The biggest limitation of Eqs.2-

4 is the static α used, in contrast to the dynamic heating processes in the experiments

and simulations. To better predict experiments/simulations requires a theory for the laser

heating process (how α changes with time), which requires future research.
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FIG. 1: (color online) A plot of the thermal parameter α vs. Uth/c =
√

T/mc2 for two different

distributions: Maxwellian (M) and Maxwell-Juttner (MJ).

FIG. 2: (color online) Plots of typical growth rates vs. mode numbers [long pulses (a) and short

pulses ( c )] and the growth rates and mode numbers of the dominant modes vs. temperatures

[long pulses (b) and short pulses (d)]
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FIG. 3: (color online) Comparisons of the dominant mode number observed in the experiment[15]

(a) and the simulation[7] (b) with those predicted by the long pulse theory.
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