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We develop a theoretical framework for the dissipative propagation of quantized light under con-
ditions of electromagnetically induced transparency in atomic media involving strongly interacting
Rydberg states. The theory allows us to determine the peculiar spatiotemporal structure of the
output of the recently demonstrated single-photon filter and the recently proposed single-photon
subtractor, which, respectively, let through and absorb a single photon. In addition to being crucial
for applications of these and other optical quantum devices, the theory opens the door to the study of
exotic dissipative many-body dynamics of strongly interacting photons in nonlinear nonlocal media.
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Dissipation has recently been recognized as a powerful
tool for quantum information and many-body physics [1–
11]. A particular example, realized in recent experiments
[12–14], is the propagation of quantized light fields in Ry-
dberg media [15–18] under the conditions of electromag-
netically induced transparency (EIT) [19]. While Ry-
dberg states provide strong long-range atom-atom inter-
actions, EIT provides strong atom-light interactions with
controlled dissipation. The resulting combination gives
rise to strong and often dissipative photon-photon inter-
actions [20–23], which can be used to generate a variety
of non-classical states of light [12–14, 24–38] and to im-
plement photon-photon and atom-photon quantum gates
[21, 23, 39, 40]. First wavefunction-based descriptions of
two-photon propagation in Rydbeg EIT media have re-
vealed the emergence of correlated two-photon losses that
could enable the deterministic generation of single pho-
tons [13, 21]. Yet, the fate of the remaining photon as
well as the underlying dissipative many-body dynamics
have remained unclear despite their essential role in the
performance of future Rydberg-EIT-based nonlinear op-
tical quantum devices.

In this Letter, we address these outstanding questions
and develop a theory for the dissipative many-body dy-
namics of quantized light fields in a strongly interact-
ing medium. In contrast to earlier studies [13, 21], our
theory provides information about the many-body den-
sity matrix of the light field, i.e. it faithfully describes
the process of populating the m-photon states from the
(m+1)-photon manifold as a photon scatters. In addition
to opening the door to the study of photonic dissipative
many-body physics, the theory allows one to compute
the complex spatiotemporal structure of the generated
non-classical light fields, whose understanding is crucial
for applications. As two important examples that illus-
trate this point and evince the power of our method, we
consider the recently demonstrated single-photon filter
[13, 21] and the recently proposed single-photon subtrac-
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FIG. 1. Single-photon filter. A classical field with Rabi fre-
quency Ω resonantly coupling the excited state |e〉 to the Ry-
dberg state |r〉 controls the propagation of the quantum field

Ê . The EIT-compressed pulse length Lp is assumed to be
smaller than the length L of the medium and the blockade
radius zb.

tor [26]. In the limit of strong interactions, our approach
yields exact solutions to the dissipative many-body evo-
lution, provides an intuitive picture of the underlying
physics, and highlights the importance of the entrance
dynamics of the incoming photons. This dynamics may
be crucial for photon storage in a nonlinear quantum
memory [12], while the developed theoretical framework
should enable the understanding of recent experiments
[13, 14] beyond the limit of extremely weak input.

The basic physics can be illustrated by considering the
example of a single-photon filter shown in Fig. 1. In the
absence of interactions, the probe field Ê couples with an
effective spin wave of Rydberg atoms |r〉 to form a slow-
light polariton [19]. Whenever two polaritons are within
the so-called blockade radius zb of each other, the strong
interactions between |r〉 atoms destroy EIT and lead
to strong dissipation [21]. If the EIT-compressed pulse
length Lp is smaller than the length L of the medium
and the blockade radius zb, the first photon propagates
without losses under EIT conditions but causes scatter-
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ing of all subsequent photons [21]. The density matrix of
the first photon is obtained by tracing over all the sub-
sequent photons. Since the first photon must already be
inside the medium to cause scattering, the timing of the
first scattering event [t2 in Eqs. (7,10)] carries informa-
tion about the first photon. Therefore, the transmitted
single photon is impure. In the following, we develop a
master-equation-type framework that allows one to de-
termine the state of the output photons in this and other
Rydberg-EIT problems, including those that do not sat-
isfy the condition Lp < L, zb.

Setup.—Let Ê†(z), P̂ †(z) (∼ |e〉〈g|), and Ŝ†(z) (∼
|r〉〈g|) be the slowly-varying operators for the creation
of a photon, an excitation in state |e〉, and a Rydberg
excitation |r〉, respectively, at position z [41–43]. As-
suming that almost all atoms are in |g〉 at all times, the
operators satisfy the same-time commutation relations
[Ê(z), Ê†(z′)] = [P̂ (z), P̂ †(z′)] = [Ŝ(z), Ŝ†(z′)] = δ(z− z′)
[41–43]. The Heisenberg equations of motion inside the
medium z ∈ [0, L] are [13, 21, 41–43]

∂tÊ(z, t) = −∂zÊ(z, t) + igP̂ (z, t), (1)

∂tP̂ (z, t) = −P̂ (z, t) + igÊ(z, t) + iΩŜ(z, t) + F̂P (z, t),(2)

∂tŜ(z, t) = iΩP̂ (z, t)− i
∫
dz′V (z−z′)Ŝ†(z′)Ŝ(z′)Ŝ(z).(3)

Here V (z) = C6/z
6 is the Rydberg-Rydberg interaction

whose spatial non-locality contrasts with typical nonlin-
ear quantum optical systems [44–46]. F̂P is a δ-correlated
vacuum Langevin noise operator [47]. g is the collec-
tive atom-photon coupling constant, time and frequen-
cies were rescaled by γ (the halfwidth of the |g〉-|e〉 tran-
sition), while z was rescaled by c/γ. In these units, the
blockade radius is given by zb = (C6/Ω

2)1/6 [21] and
c = 1. Outside the medium (z /∈ [0, L]), Ŝ(z, t) and
P̂ (z, t) are not defined and (∂t + ∂z)Ê(z, t) = 0.

Incoming n-photon Fock state.—For simplicity,
throughout the paper, we assume that the incoming
pulse is confined to a single – for simplicity, real – arbi-
trary spatiotemporal mode h(t) satisfying

∫
dth2(t) = 1.

Then an incoming n-photon Fock state – before entering
the medium – can be written as

|ψ(t)〉 =
1√
n!

[∫ ∞
−∞

dxh(t− x)Ê†(x)

]n
|0〉, (4)

while its full density matrix at all times has the form

ρ(t) =

m∑
m=0

ρm(t), (5)

where ρm contains m (photonic or atomic) excitations.
The detection of the scattered photons by the environ-
ment erases the correlations between the m+ 1 terms in
Eq. (5). The Heisenberg equations of motion (1-3) yield
master-equation-type evolution equations for the matrix
elements of ρm. If all but at most one photon are scat-
tered, the only nonvacuum matrix element that survives

in the output field is ee(x, y, t) = tr[ρ1(t)Ê†(x)Ê(y)]. As
shown in the supplementary material [48], the dissipa-
tive propagation can be solved analytically for arbitrary
photon number n under conditions of perfect EIT with
Lp < L, zb and numerically for n = 2 without any re-
striction on the experimental parameters. In the former
case, the resulting dynamics can be derived within a more
general and simpler framework outlined below.

Perfect EIT with Lp < L requires a large optical depth
of the medium [19], implying that the absorption length
is much smaller than the blockade radius zb and the com-
pressed pulse length Lp. Since Lp < zb, at most one pho-
ton can propagate through the medium without losses.
Then a fundamental question directly relevant to the ex-
periments in Refs. [13, 14] is whether all n incoming pho-
tons are lost as they blockade each other’s propagation
or whether one photon indeed survives.

To answer this question, we work in the Schrödinger
picture [49] and rewrite the input pulse [Eq. (4)] outside
the medium by time-ordering the photons:

|ψ(t)〉 =
√
n!

∫
tn>···>t1

[
n∏
i=1

dtih(ti)E†(t− ti)
]
|0〉, (6)

so that each set of ti in Eq. (6) appears in Eq. (4) n! times.
While the n incoming photons are in the same spatial
mode and hence indistinguishable, the possibility of time
ordering is the crucial conceptual step in the derivation.
As the first photon (i = 1) enters the medium, it turns
into a Rydberg spin-wave excitation Ŝ moving at the EIT
group velocity vg = (Ω/g)2c � c. Since Lp < zb, this
single Rydberg excitation turns the entire medium seen
by the remaining n− 1 photons into a resonant two-level
medium. As the absorption length is much smaller than
Lp, all the remaining photons get scattered [see term

−P (z, t) in Eq. (2)] into some other mode Q̂ as soon
as they enter the medium. We will later trace over those
loss channels, so we can assume without loss of generality
that Q̂ is also a one-dimensional mode with commutation
relation [Q̂(z), Q̂†(z′)] = δ(z − z′) [50]. Once the entire
pulse is inside the medium, we, therefore, have

|ψ(t)〉=
√
n!

∫
tn>···>t2

[
n∏
i=2

dtih(ti)Q̂
†(t− ti)

]
|ψt2(t)〉, (7)

where

|ψt2(t)〉 = −√vg
∫ t2

−∞
dt1h(t1)Ŝ†(vg(t− t1))|0〉. (8)

Taking |ψ(t)〉〈ψ(t)| and tracing over photons in mode Q̂,
we obtain

ρ(t) =

∫
dxdyss(x, y, t)S†(y)|0〉〈0|S(x) = (9)∫

dt2n(n− 1)h2(t2)

[∫ ∞
t2

h2(τ)dτ

]n−2
|ψt2(t)〉〈ψt2(t)|, (10)
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FIG. 2. The narrowing and advancing of the produced single-
photon intensity profile ee(x, x) with increasing input inten-
sity. The input mode h2(x) ∝ exp[−x2/(2σ2)] is shaded. (a)
Input is a Fock state with the indicated value of n. (b) Input
is a coherent state with the indicated mean photon number
|α|2.

where ss(x, y, t) = φ(x/vg − t, y/vg − t)/vg is the density
matrix of the remaining spin wave with

φ(x, y) = nh(−x)h(−y)

[∫ min(x,y)

−∞
dzh2(−z)

]n−1
, (11)

which together with Eq. (9) yields the dynamics inside
the medium. For the purposes of this derivation, we have
ignored the small photonic component ee = vgss. This
solution has a simple physical interpretation in the spirit
of master-equation unraveling [51]: The trace of the in-
tegrand in Eq. (10) is the probability that the second
photon enters the medium (and immediately scatters) in
the time interval [t2, t2 + dt2], while |ψt2(t)〉 is the un-
normalized spin wave that would be propagating in the
medium had we detected that scattering event.

Transforming to a moving frame of reference, the den-
sity matrix of the output photon becomes ee(x, y) =
φ(x, y) [see Eq. (11)]. This result shows that exactly one
photon indeed survives the dissipative entrance dynam-
ics: tr[ρ] =

∫
dxφ(x, x) = 1. It also yields a remarkably

simple result for the purity of the created photon:

tr[ρ2] =
n

2n− 1
. (12)

As expected, the purity is smaller than unity because the
timing of the scattering event carries some information
about the remaining spin wave |ψt2(t)〉. Crucially for
applications, the purity does not vanish but approaches
1/2 as n → ∞. Surprisingly, it is independent of the
mode shape h(t). Furthermore, the eigenvalues pi and
eigenvectors φi(x) of φ(x, y) can be easily found [48] by
using the change of variables x →

∫ x
−∞ dzh2(−z), which

makes the density matrix and hence pi independent of
h(t). Physically, this surprising behavior emphasizes the
fact that the key role is played simply by the arrival order
of n identical photons and not by the shape of the mode.

This dynamics at the medium boundary leads to a
slight narrowing and advancing of the single-photon pulse
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FIG. 3. (a) For an incoming n = 2 Fock state, the two-
photon amplitude and the single-spin-wave density matrix at
different times. See Ref. [48] for the full movie. (b) Approx-
imate analytical (dashed) and exact numerical (solid) results
for the efficiency tr[ρ1] (red) and purity tr[ρ21]/tr[ρ1]2 (blue)
of the single excitation. The purple arrow indicates the effi-
ciency of retrieving Eq. (9) with n = 2. (c) As a function of
the mean photon number |α|2 of the incoming coherent pulse,
for the indicated values of the blockaded optical depth ODb,
the estimated efficiency η of the single-photon source.

φ(x, x), as shown in Fig. 2(a) for a typical Gaussian in-
put mode. This behavior can be traced back to the first
scattering event, which projects the leading photon into
the medium. This effect becomes more pronounced with
increasing n, since the larger n is the sooner the first
scattering event takes place. More succinctly, the prob-
ability distribution of the first photon is obviously ad-
vanced and narrower relative to the normalized probabil-
ity distribution h2(t) of the entire incident pulse. Fortu-
nately, for our Gaussian h(t), φ(x, x) and φi(x) shorten
extremely slowly with n as ∼ 1/

√
log n, keeping the as-

sociated losses at a minimum.

To verify this intuitive picture, we carried out nu-
merical simulations for n = 2 incoming photons and
h(t) ∝ 1−4(t/T−0.5)2 (t ∈ [0, T ]) using the full propaga-
tion equations derived from Eqs. (1-3) [48]. This form of
h(t) is motivated by optimal photon storage [43, 52]. The
results are shown in Fig. 3(a,b). In Fig. 3(a), the left-
bottom quadrant corresponds to both photons being still
outside the medium, so t = 0 is described by Eqs. (4,6).
The top-right quadrant corresponds to both photons be-
ing inside the medium, so t = T is described by Eq. (9).
Finally the remaining two quadrants correspond to the
first photon being already inside the medium while the
second photon is still outside. Fig. 3(b) shows a compar-
ison to the analytical prediction from Eqs. (9,11) [53].
While imperfections keep the single-photon conversion
efficiency slightly away from unity, the overall physical
picture is very well confirmed by our numerical simula-
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tions. To verify that losses induced by the finite width of
the EIT transparency window – and not the correlated
photon dynamics upon pulse entrance – constitute the
dominant imperfection, the purple arrow in Fig. 3(b) in-
dicates the efficiency of retrieving Eq. (9) with n = 2
back out of the medium.

Arbitrary incoming state.— Since any mixed state can
be represented as a classical mixture of pure states, it is
sufficient to consider an arbitrary pure input state

|ψ〉 =
∑
n

cn|n〉, (13)

where |n〉 is given in Eq. (4). Since |0〉 and |1〉 scatter
no photons while the scattered photons for n ≥ 2 destroy
the associated coherences, tracing over all photons except
for the first one yields

ρ = (c0|0〉+ c1|1〉)(c∗0〈0|+ c∗1〈1|) +
∑
n≥2

|cn|2ρ(n)1 ,(14)

where ρ
(n)
1 , given in Eq. (11), is the single photon ob-

tained from the Fock state |n〉. The single-photon con-
version efficiency is 1− |c0|2, i.e. limited by the vacuum
component of the input state. The corresponding purity
is tr[ρ21]/(1− |c0|2)2, where

tr[ρ21] =
∑
m,n≥1

|cm|2|cn|2
2mn

(m+ n− 1)(m+ n)
. (15)

For a coherent input with mean photon number |α|2,

|ci|2 = e−|α|
2 |α|2i/i!, the efficiency is thus 1−e−|α|2 , while

the single-photon purity is (1− e−|α|2)−2(1− e−2|α|2(1 +
2|α|2))/2, which falls off monotonically from 1 to 1/2 with
increasing |α|2. Since |c0|2 drops exponentially with |α|2,
a small average number of incoming photons |α|2 ∼ 10
is sufficient to make the single-photon source determinis-
tic. Repeating the above derivations, one obtains for the
output density matrix

φ(x, y) = |α|2h(−x)h(−y) exp

[
−|α|2

∫ ∞
min(x,y)

h2(−z)dz
]
,(16)

which can easily be diagonalized [48]. As for a Fock-
state input with Gaussian h(x), the output pulse shortens
extremely slowly with increasing |α|2 (∼ 1/

√
log |α|), as

shown in Fig. 2(b).
The efficiency of this single-photon source – imperfect

due to the finite width of the EIT window – can be es-
timated from the analytical form of the density matrix
without involving interactions. We assume that the in-
coming pulse is stored without interactions into the spin-
wave s(z) ∝ 1 − 4(z/L − 0.5)2 and that the single-spin-
wave density matrix [Eq. (11) or Eq. (16)] is retrieved
forward. The efficiency η of the single-photon source can
then be estimated as the product of these two – storage
and retrieval – efficiencies. The |α|2-dependence of η for

a coherent input is shown in Fig. 3(c) for different block-
aded optical depths ODb, assuming the entire medium is
blockaded. The relatively poor scaling of the efficiency
with ODb results from the cusp of the density matrix
φ(x, y) along the diagonal (x = y), which carries high-
frequency components. In a magneto-optical trap (den-
sity N ∼ 1012 cm−3), ODb ∼ 10 [13], and hence η ≈ 0.2
can be achieved. In a BEC [37, 54], N ∼ 1014 cm−3 can
give ODb ∼ 1000 and η ≈ 0.9. The efficiency can be
further increased by using photonic waveguides [55–58]
and by further optimizing h(t) and retrieving backwards
[43, 52].

Despite their impurity, the single photons produced
with this method are a valuable resource. In particular,
the impurity, which can be measured [59] using Hong-Ou-
Mandel interference [61], would not interfere with appli-
cations that do not rely on this effect, such as optical
quantum computing with impurity-insensitive two-qubit
gates (e.g. [62]) or the BB84 quantum key distribution
protocol [63]. For applications that rely on Hong-Ou-
Mandel interference, the photon can be purified in the
following ways. First, the detection of the first scattered
photon would yield a pure photon. Second, the impure
single photon can be purified to the dominant eigenvector
|φ1〉 with probability p1 (p1 = 0.69 for |α|2 � 1). This
can be accomplished, e.g., using an atomic ensemble in
a cavity [64] to store only the mode |φ1〉, heralded by
the absence of a click at the cavity output, followed by
retrieval into any desired mode [65].

Photon subtraction.—To demonstrate the versatility
of the developed theory, we now apply it to the single-
photon subtractor [26]. The subtractor requires adding a
large single-photon detuning to the level diagram of Fig.
1 and relies on inhomogeneous dephasing of the |g〉-|r〉 co-
herence to incoherently absorb the photon into state |r〉.
We show that this scheme also yields impure output. The
detailed physics of such a setting [48] is complementary
to the single-photon source in so far as the density matrix
of the remaining photons is obtained by tracing out the
first one. Since the timing of the absorption carries infor-
mation about the remaining photons, the density matrix
of the latter is impure. In fact, the single-photon subtrac-
tor and the single-photon filter complement each other to
make the original pure state. Hence, the impurity and
the entire eigenspectrum of the reduced density matrix
are identical in the two cases.

This can be shown by tracing over the first photon in
Eq. (13) to obtain

ρ = |c0|2|0〉〈0|+
∫ ∞
−∞

dt1h
2(t1)|ψt1(t)〉〈ψt1(t)|, (17)

where

|ψt1(t)〉 =
∑
n≥1

cn

√
n!

(n− 1)!

[∫ ∞
t1

dt′h(t′)E†(t− t′)
]n−1

|0〉,

which has the same eigenspectrum as Eqs. (14).
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Outlook.—In conclusion, we extended the dynamics of
open quantum systems of Rydberg atoms [66–75] to in-
clude the dissipative quantum dynamics of the propagat-
ing light field, which is crucial for the understanding of
recent experiments [13, 14]. While we focused on the
case zb > Lp, the developed framework also applies to
the opposite regime [13, 14] and may lead to a quantita-
tive description of the saturation behavior in Ref. [13]. It
can also be easily extended to a time-dependent blockade
radius, as relevant for photon storage via time-dependent
control fields. Extensions to non-dissipative unitary evo-
lution [40], media with longitudinal density variations,
incomplete transverse blockade, as well as finite Rydberg-
state lifetime are straightforward [13]. Finally, we ex-
pect our calculations to be extendable to other light-
processing modules, such as the quantum filter [76, 77].
Most importantly, our approach may lead to a simplified
effective theory for the many-body dissipative dynamics
of correlated photons in strongly interacting media.
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