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A spinning ideal gas in a cylinder with a smooth surface is shown to have unusual properties. First,
under compression parallel to the axis of rotation, the spinning gas exhibits reduced compressibility
because energy can be stored in the rotation. Second, the spinning breaks the symmetry under
which partial pressures of a mixture of gases simply add proportional to the constituent number
densities. Thus, remarkably, in a mixture of spinning gases, an inverse problem can be formulated
such that the gas constituents can be determined through external measurements only.

PACS numbers: 05.70.Ce, 47.55.Ca

Introduction: The classic problem of rotating gases
arises in a variety of physical contexts, both naturally
and in device applications [1, 2]. Natural contexts include
accretion discs or compact stars such as white dwarfs [3].
Device applications include vortices in turbines and cen-
trifuges [4]. The equilibrium state can be characterized
by conserved quantities, including both relativistic and
quantum effects [5, 6]. In the absence of relativistic or
quantum effects, an equation of state for radially adiabat-
ically compressing spinning gases was recently obtained
and numerically simulated [7].

What we consider here is a nonrelativistic, spinning
Boltzmann gas, rotating with angular velocity ω, con-
fined to a long cylinder of radius r0 and length L, with
L ≫ r0. The spinning gas can also be compressed adi-
abatically either longitudinally (parallel to the axis of
rotation) or radially. The gas has very small slip on
the smooth cylinder walls, so angular momentum is con-
served on time scales of interest. We will assume that: (i)
the cylinder is long, so that end effects are negligible; (ii)
there is no friction on the walls (smooth wall condition);
and (iii) the gas is at all times very close to equilibrium.
From assumption (iii), it follows that the temperature
T is constant in space, and that viscous friction assures
that all rotating layers have the same angular velocity
ω (solid body rotation). The rotation can be initialized
even for vanishing viscosity by spinning the cylinder for
a time long enough to reach equilibrium. The third as-
sumption means that the slow adiabatic processes of gas
compression and expansion can be approached through
thermodynamic considerations, neglecting fast dynamics
such as inhomogeneous flow and turbulence.

We show here that such a spinning gas has two hitherto
unappreciated and unusual properties:

First, under longitudinal compression, the spinning
gas features reduced compressibility. To see the reduced
compressibility effect, consider that in the case of rela-
tively low temperature, the spinning gas hugs the cylin-
der walls. But as the gas is compressed longitudinally, its
temperature rises, so the spinning gas can no longer hug
the cylinder walls. Thus, as the gas moves to lower radii,
its rotational velocity must increase in order to conserve

angular momentum. The energy for the increased rota-
tional energy must come from the temperature, so for a
given decrease in length L, the pressure of the spinning
gas increases less than the pressure of a stationary gas
at the same temperature. In other words, because en-
ergy can be stored in rotation, the rotation introduces a
reduced compressibility in the axial direction.

Second, because of the rotation, partial pressures of a
mixture of gases no longer simply add proportional to
the constituent number densities. Under rotation, heav-
ier gases will sediment more towards larger radii, thereby
capturing more of the angular momentum. That leaves
the lighter gases less subject to, for example, the reduced
compressibility effect. Since the partial pressures of dif-
ferent constituents now respond differently to rotation,
the equation of state is more complicated. But this also
means that, from the external parameters (such as pres-
sure, radius, length, or temperature), it is possible to
deduce the concentrations of individual constituents in
the gas mixture. Thus, the spinning gas permits an in-
verse problem for gas composition, not available for the
non-spinning gas.

This inversion can have practical implications: Given
a cylinder with an unknown gas mixture that is unsafe to
open or otherwise difficult to analyze spectroscopically,
its components might be deduced nonetheless by spinning
the cylinder and measuring external parameters, such as,
for example, the pressure response to longitudinal or ra-
dial compression.

Basic equations: To see these unusual properties, con-
sider first the equation of state for a single-component
ideal gas, P = nT , with pressure P and density n. Using
assumption (iii), namely the isothermal approximation,
we have dP = dnT . From radial force balance we have
dP = drn(r)mω2r, which can be integrated to give

n = n0 exp

(

mω2r2

2T

)

, (1)

where the constant n0 can be written in terms of radius
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FIG. 1: Functional dependence of angular momentum on ϕ.

r0 and total number of particles N as

n0 =
mω2N

2πTL

(

1

eϕ − 1

)

=
N

V

ϕ

eϕ − 1
. (2)

Here we introduce ϕ = mω2r20/2T , the ratio of rotation
kinetic energy at the boundary to the temperature, and
the volume of the cylinder, V = πr20L. Note that small
ϕ describes the limit of ideal gas without rotation, while
large ϕ describes the limit of cold particles all rotating
at frequency ω along the boundary at radius r0.

The total angular momentum M can be written as

M = mL

r0
∫

0

2πrdrn(r)ωr2 = Nmωr20A(ϕ), (3)

where

A(ϕ) =
eϕ(ϕ− 1) + 1

ϕ(eϕ − 1)
, (4)

and where the factor Nmωr20 is the angular momentum if
all particles were rotating with frequency ω at the bound-
ary. As expected and as we see from Fig.(1), A(ϕ) tends
to 1/2 for ϕ small to and 1 for large ϕ. The most inter-
esting behavior will result from intermediate ϕ.

Since the total angular momentum M = M(ω, r0, ϕ)
is conserved, while ϕ = ϕ(ω, r0, T ), we can write the
variation of M in the form

dω

(

∂M

∂ω
+

∂M

∂ϕ

∂ϕ

∂ω

)

+ dT
∂M

∂ϕ

∂ϕ

∂T
+

dr0

(

∂M

∂ϕ

∂ϕ

∂r0
+

∂M

∂r0

)

= 0. (5)

For completeness, the partial derivatives required to cal-

culate dω may be written as:

∂M

∂ϕ
= M

(1 + e2ϕ − 2eϕ − ϕ2eϕ)

ϕ(eϕ − 1)(eϕ(ϕ− 1) + 1)
= MH(ϕ), (6)

∂M

∂ω
=

M

ω
,
∂M

∂r0
= 2

M

r0
, (7)

∂ϕ

∂r0
= 2

ϕ

r0
,

∂ϕ

∂ω
= 2

ϕ

ω
,

∂ϕ

∂T
= −

ϕ

T
. (8)

where for simplicity we introduced a function H(ϕ).
In Eq. (5), the terms ∂M/∂ω and ∂M/∂r0 are inde-

pendent of the redistribution of the particle density, and
would be the sole surviving terms in the cold gas limit.
The term ∂M/∂ϕ reflects the changing particle distribu-
tion at finite temperature.
The energy E can be written as E = E′ + Mω/2,

where E′ is the internal energy in rotating coordinate
system and rotation energy is given by the second term
[2]. For an ideal, nonrelativistic gas, the particle internal
energy depends on temperature only, so the energy can
be written as E = cvNT +Mω/2, where cv is the specific
heat. The energy change, for an adiabatic process, can
then be put as the work done on the system, so that

pdV = −dE = −cvNdT − (M/2)dω, (9)

The energy balance together with angular momentum
conservation provides complete information in calculat-
ing how internal variables, such as T and ω, depend on
external variables such as r0 and L.
Longitudinal Compression: Slowly compressing the

cylinder from the ends (keeping radius r0 constant), in-
creases the temperature. However, if the temperature
increases, then ϕ decreases, so that, to conserve angular
momentum, ω must increase. Thus, the rotation speed
increases, even in the absence of radial compression, with
Eq. (3) giving implicitly the dependence of ω on T . The
energy distribution between heating and spinning may
be found by first integrating the pressure on the surface
of the cylinder end to find

pdV =

r0
∫

0

2πrdrp(r)dL =
NT

L
dL. (10)

Note that the side compression acts only against the
thermal motion of the particles, since the spinning ve-
locity is perpendicular to the force exerted. Now using
Eq. (10) together with Eq. (9), and substituting for dω,
from Eq. (5), we get

dL

L
+

dT

T
(cv +B(ϕ)) = 0, (11)

where in Fig. 2, we plot the function B(ϕ),

B(ϕ) =
ϕ2A(ϕ)H(ϕ)

1 + 2ϕH(ϕ)
, (12)
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FIG. 2: Parallel and perpendicular compression functions,
B(ϕ) and C(ϕ).

which governs the extent to which compression energy is
converted into rotation energy. The maximum fraction,
1/(1 + cv), is reached as ϕ → ∞. In this limit, heat-
ing the gas changes the density distribution, resulting in
faster spinning. In the opposite limit, ϕ → 0, the ra-
dial density distribution cannot change significantly, so
neither can the rotation energy. Clearly, the rotation fa-
cilitates compression; because some energy is absorbed
by the spinning degree of freedom, the temperature and
hence the pressure, grow more slowly with compression,
which might be called a reduced compressibility effect.
Perpendicular Compression: Perpendicular compres-

sion is somewhat more complicated than longitudinal
compression, because r0 is no longer invariant. The work
done by radial compression can be written as

pdV = dr02πLp(r0) = dr0
Nmω2r0e

ϕ

eϕ − 1
. (13)

Note that, while the pressure is isotropic, the force acting
on the radial walls is different from that is acting in axial
direction since it includes also the centrifugal force. Now
using Eq. (13) together with Eq. (9), and substituting for
dω, from Eq. (5), we get

dr0
r0

+
dT

T
C(ϕ) = 0, (14)

where

C(ϕ) =
1
2 (cv +B(ϕ))

ϕeϕ

eϕ−1 − ϕA(ϕ) 1+ϕH(ϕ)
1+2ϕH(ϕ)

. (15)

As we see from Fig. 2, in the non-rotating limit, ϕ → 0
a C(ϕ) approaches cv/2. On the other hand, for the
strongly rotating case, C(ϕ) has a finite limit C(ϕ) →

(cv + 1)/4, even though most of pdV work increases the
rotation energy, namely the ratio of the energy going to
heat over the work against centrifugal force is

D =
cvNdT

pdV − cvNdT
=

cv(e
ϕ
− 1)

2ϕeϕC(ϕ)− cv(eϕ − 1)
, (16)

and D → 0 as ϕ → ∞.
Commutative property: The adiabatic parallel and

perpendicular compression will possess a commutative
property. To see this, consider differential changes of
radius and parallel length (dr0, dL), with the goal to
demonstrate that the order of dr0 and dL is immaterial.
Call compression first in dr0 the RL process and compres-
sion first in dL the LR process. For adiabatic processes,
by the second law of thermodynamics, the processes must
be reversible. Hence, since energy is a state function,
monotonic with respect to both T and ω, the work done
through LR and RL must be identical. For, if not, then
we could set up a cycle that eventually gives us positive
work, by pumping energy through one process and re-
trieving it through the other. However, this would violate
the second law of thermodynamics because, as the total
energy is conserved, work can be obtained only through
cooling of the gas. Since any macroscopic change can be
constructed through adding differential changes, clearly
parallel and perpendicular compression are commutative.
This result may also be shown directly by calculating the
work done through Eq. (13) and Eq. (10).
Inverse problem: While the spinning preserves the

commutative property of parallel and perpendicular com-
pression, it does break the property that the total pres-
sure in a system with different mass gases is simply pro-
portional to the total number of gas molecules. Note that
the degree to which the spinning affects the compressibil-
ity is governed by the ratio of spinning energy to thermal
energy ϕ for each species; since temperature T and ro-
tation ω are common to all gases, the ϕ for each gas de-
pends linearly on the mass. This, in turn, means that at
the same temperature and rotation, different mass gases
will behave differently to differential changes in rotation,
temperature, or volume.
To be specific, consider that, by Dalton’s law, the total

pressure is a sum of partial pressures of each gases,

p =

K
∑

i=0

Pi =
T

V

K
∑

i=0

Niϕie
ϕi

eϕi − 1
, (17)

where ϕi = miω
2r20/2T . For the vanishing rotation case,

where all the ϕi vanish, we have

p →
T

V

K
∑

i=0

Ni =
TNtot

V
, (18)

so, clearly, measurements of external parameters of the
system inform only on the total number of particles Ntot,
but not the individual Ni. Similarly, for supersonic rota-
tion, in the limit that all the ϕi are large, we have

p →
r20ω

2
0

2V

K
∑

i=0

Nimi =
r20ω

2
0

2V
mtot, (19)

where mtot is the total confined mass. Thus, external
measurements inform only on the total mass, but, as in
the opposite limit, not on the individual Ni.
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However, for finite rotation, the coefficients weighting
the Ni in Eq.(17) differ for different mass molecules, and
depend on both temperature T and rotation ω. Thus, by
varying either temperature or rotation velocity, in princi-
ple, K independent measurements of total pressure could
be made to resolve K species through a linear system of
equations to find Ni. Of course, the degree to which
these measurements are informative will depend upon
the sensitivity of the partial pressures to the variations in
temperature or rotation velocity. Hence, we can imagine
that the most informative measurements occur for inter-
mediate rotation speeds when, for any two species i and
j, there is at least one measurement in which not both
species are in the same ϕ limit.
In principle, any number of inverse problems could be

constructed in which, given masses mi, the pressure as a
function of external parameters such as L or r0 are used
to calculate the Ni. As but one example, we show here
a class of inverse problems that admit analytic solutions,
specifically, the distribution of massesN(m) can be found
from measuring the radial pressure as a function of T or
ω.
First, write the total pressure as

p(x) = x
T

V

∞
∫

0

N(m)mexmdm

exm − 1
, (20)

where we introduced the parameter x = ω2r20/2T . Note
that the limit of small x give the total number of particles

p(0) =
T

V

∞
∫

0

N(m)dm =
T

V
Ntot, (21)

and the limit of large x gives total mass of particles mtot

p(∞) = x
T

V

∞
∫

0

N(m)mdm = x
T

V
Mtot. (22)

Define now the function G(x)

G(x) = p(x)− p(∞) = x
T

V

∞
∫

0

N(m)mdm

exm − 1
. (23)

Eq.(23) is Fredholm integral equation of first kind for
unknown N(m), with kernel K(m,x) = m/(exm − 1),
and known G(x). Multiply G(x) by xs−1 and integrate
with respect to x

∞
∫

0

xs−1G(x)dx =
T

V

∞
∫

0





∞
∫

0

(xm)sd(xm)

exm − 1



 dmN(m)m−s

=
T

V

∞
∫

0

dyys

ey − 1

∞
∫

0

dmN(m)m−s. (24)

Since G(0) = T Ntot/V , in order for the first integral to
converge we demand Re(s) > 1. The second integral con-
verges when Re(s) > 0. For the last integral to converge
we need to have N(0) = 0, i.e. the realistic condition
that all molecules have finite mass. To solve for N(m)
we employ an integral Mellin transform, given by

φ(s) =

∞
∫

0

xs−1f(x)dx, (25)

f(x) =
1

2πi

C+i∞
∫

C−i∞

x−sφ(s)ds. (26)

Now we have

K̂(s) =

∞
∫

0

ys−1 y

ey − 1
dy = Γ(s+ 1)ζ(s+ 1), (27)

Ĝ(s) =

∞
∫

0

xs−1G(x)dx, (28)

N̂(1 − s) =

∞
∫

0

m−sN(m)dm, (29)

where, Γ(s) and ζ(s) are the Euler Gamma function and
Riemann Zeta function respectively. Thus, the solution
for the image is

N̂(s) =
V

T

Ĝ(1− s)

Γ(2− s)ζ(2 − s)
, (30)

giving N(m)

N(m) =
V

2πiT

C+i∞
∫

C−i∞

Ĝ(1 − s)

Γ(2 − s)ζ(2− s)
m−sds. (31)

Note that the class of inverse problems solved here
began with knowledge of p(x) only, namely the pres-
sure measured at the radial periphery as a function of
x, which in turn depends explicitly on rotation speed,
temperature and radius. However, these parameters in
turn might be interdependent, depending on the partic-
ular way in which the parameters are varied. Perhaps
the easiest realization of the inverse problem is to vary
the the frequency, putting the cylinder in a heat bath,
thus leaving the radius and temperature constant. The
frequency can be varied until a steady state is reached at
constant temperature.
However, insofar as this class of inverse problems is

concerned, any way in which pressures are measured as a
function of x admits the inverse solution, no matter how
the range of x is obtained. For example, we can vary
not angular velocity, but temperature, and measure again
the pressure on the wall. Alternatively, the spinning gas
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can be compressed longitudinally or radially. In each
case, a range of x is obtained. The precise range of x
expected may be found by using Eq. (14) in the case of
perpendicular compression and Eq. (11) in the case of
parallel compression. In either case, once the pressure
function p(x) is measured, the inversion of the Fredholm
equation gives us the distribution function N(m).
However, for the inversion to be robust against noise in

the measurements, we expect that, however the range in
x is obtained, it will be important to reach intermediate,
or approximately sonic (when mean gas flow velocity is
equal to thermal velocity), rotation speeds for each gas
constituent. As discussed, it is at the sonic speeds that
the distribution function of any constituent gas is most
sensitive to changes in temperature or rotation speeds.
Additional robustness might be obtained through other
sources of information, for example, that the molecular
masses must take on discrete values only, or that the
molecular masses are chosen from a certain finite subset
of all possible masses. The quantification of these other
sources of information, however, is outside the scope of
our effort here. Our main goal here is simply to point
out that there is a whole class of inverse problems that
now can now be formulated and solved.
Conclusion: The spinning gas possesses a number of

significant and apparently unnoticed features. A finite
rotation velocity changes the compressibility of the gas
in both the perpendicular and axial directions, with the
axial direction exhibiting an unusual reduced compress-
ibility effect. The rotation plays the role of energy stor-
age similar to a change in specific heat. However, because
this storage effect is most sensitive to external parameters
at sonic rotation, as opposed to subsonic or supersonic
rotation, constituent gases in a mixture may be distin-

guished by molecular weight. Thus, as opposed the case
of no rotation, for finite rotation, a variety of inverse
problems can be constructed in which external parame-
ters can resolve the individual constituent gas densities.
Remarkably, these inverse problems admit direct solu-
tions by posing the inversion as a Fredholm integral of
the first kind. The practical merit of these inverse prob-
lems is that gas constituents in a closed cylinder, lacking
spectroscopic access, might nonetheless be deduced by
external measurements.
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