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Using experiments and simulations, we investigate the clusters that form when colloidal spheres
stick irreversibly to – or “park” on – smaller spheres. We use either oppositely charged particles
or particles labeled with complementary DNA sequences, and we vary the ratio α of large to small
sphere radii. Once bound, the large spheres cannot rearrange, and thus the clusters do not form
dense or symmetric packings. Nevertheless, this stochastic aggregation process yields a remarkably
narrow distribution of clusters with nearly 90% tetrahedra at α = 2.45. The high yield of tetrahedra,
which reaches 100% in simulations at α = 2.41, arises not simply because of packing constraints,
but also because of the existence of a long-time lower bound that we call the “minimum parking”
number. We derive this lower bound from solutions to the classic mathematical problem of spherical
covering, and we show that there is a critical size ratio αc = (1 +

√
2) ≈ 2.41, close to the observed

point of maximum yield, where the lower bound equals the upper bound set by packing constraints.
The emergence of a critical value in a random aggregation process offers a robust method to assemble
uniform clusters for a variety of applications, including metamaterials.

Understanding the geometry of clusters formed from
small particles is a fundamental problem in condensed
matter physics, with implications for phenomena rang-
ing from nucleation [1] to self-assembly [2]. Colloidal
particles are a useful experimental system for studying
cluster geometry and its relation to phase behavior [3]
for several reasons: they are large enough to be directly
observed using optical microscopy; their assembly can be
understood in terms of geometry [4, 5]; and they can be
driven to cluster by a variety of controllable interactions,
including capillary forces [2], depletion [6], fluctuation-
induced forces [7], or DNA-mediated attraction [8]. Col-
loidal clusters are also useful materials in their own right.
They can be used, for example, as building blocks for
isotropic optical metamaterials known as metafluids [9–
11]. Tetrahedral clusters are of particular interest for
metafluids since the tetrahedron is the simplest cluster
with isotropic dipolar symmetry [9]. An unsolved chal-
lenge for this application is to determine the interactions
and conditions that enable assembly of bulk quantities of
highly symmetric, uniform clusters such as tetrahedra.

With this motivation in mind, we study experimen-
tally the geometry and size distribution of binary clus-
ters formed when small colloidal spheres are mixed with
an excess of large spheres that stick irreversibly and ran-
domly to their surfaces (Figure 1a). An obvious way to
control the cluster geometry in such binary systems is
to vary the size ratio. One might expect that at certain
ratios the particles could arrange into dense clusters or
“spherical packings” – arrangements of spheres around
a central sphere that maximize surface density [12–14].
Such packings have long been used in modeling the mi-
crostructure of dense, disordered atomic systems [15, 16].
But unlike atoms, colloidal particles can stick irreversibly,
such that two particles bound to a third show no motion

FIG. 1. (a) Two colloidal sphere species are mixed together
to form clusters. (b) Oppositely charged polystyrene spheres
cluster due to electrostatic attraction. Optical micrograph
shows a tetramer (N = 4). (c) Polystyrene spheres labeled
with complementary DNA strands (not to scale) cluster due
to DNA hybridization. Optical micrograph shows a trimer
(N = 3); the small, central sphere is fluorescent.

relative to one another. This type of binding occurs fre-
quently in strongly interacting, monodisperse colloidal
suspensions, which consequently form fractal aggregates
instead of dense glasses [17, 18]. Similarly, in the binary
systems we study, the irreversible and stochastic process
of sticking precludes the formation of dense or symmetric
packings. The large spheres park, rather than pack, on
the surfaces of the small spheres.

Surprisingly, this random and non-equilibrium process
can produce clusters of uniform size. Our experiments
show that at a size ratio α = Rbig/Rsmall = 2.45, where
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Size ratio α 1.94 2.45 3.06 4.29

N = 6 6.3 0.0 0.0 0.0

N = 5 39.2 0.8 0.0 0.0

N = 4 54.4 90.2 18.6 0.7

N = 3 0.0 6.6 69.9 35.9

N = 2 0.0 0.8 10.9 51.0

N = 1 0.0 0.8 0.6 11.1

N = 0 0.0 0.8 0.0 1.3

TABLE I. Experimentally observed cluster size distributions
for charged colloids. Percentages of total are listed. The
distribution for α = 2.45 (red) is sharply peaked at N = 4.

Rbig and Rsmall are the sphere radii, nearly all of the clus-
ters contain four large spheres stuck to a smaller sphere
(Table I). In these experiments we use a 100:1 stoichio-
metric ratio of the two sphere species, statistically en-
suring that each cluster contains only one small sphere
surrounded by two or more larger spheres. After wait-
ing several days for the average cluster size to saturate,
we measure the distribution of N , the number of large
spheres bound to each small sphere [19]. We do not count
single large spheres, nonspecifically aggregated clusters
of large spheres, or clusters with multiple small spheres.
While there are many isolated large spheres due to the
high stoichiometric ratio, the latter two types of cluster
are rare.

The N = 4 tetramers that we observe are not dense
packings or, in general, symmetric arrangements. As can
be seen from the images in Figure 1, there is space be-
tween the large particles, and the resulting tetrahedra
are irregular. Moreover, the ratio α = 2.45 is well be-
low the value α = 4.44 found by Miracle et al. [20] for
efficient tetrahedral packing in binary atomic clusters.
In fact, at α = 4.29, closer to this bound, we see much
smaller clusters and few tetrahedra. The sparsity of large
spheres in the clusters is a result of the irreversible, non-
equilibrium, random binding: once the big particles stick
to the smaller ones, we do not see them detach or move
relative to one another. We expected such a stochastic
process to lead to a much broader distribution of clusters.
At other values of α it does (Table I), but at α = 2.45
we obtain 90% tetramers.

The high yield of tetramers occurs in two experimen-
tal systems with different types of interactions. In both
systems the interactions are specific, strong, and short-
ranged, and the particles do not rearrange once bound.
In the first system the clustering is driven by electrostatic
interactions. We mix large, positively-charged particles
with small, negatively-charged particles, as shown in Fig-
ure 1b. To adjust α, we use several different particle sizes
[19]. We add salt to reduce the Debye length to approxi-
mately 3 nm, small enough to ensure that the interaction
range does not significantly influence the effective parti-
cle size. In the second system the clustering is driven by

hybridization of grafted DNA strands [19]. As shown in
Figure 1c, we mix small and large spheres labeled with
complementary DNA oligonucleotides [21]. We work well
below the DNA melting temperature so that the attrac-
tive interaction is many times the thermal energy [22].

To better understand why the distribution is sharply-
peaked at N = 4 for α = 2.45, we use simulations and an-
alytical techniques that account for the irreversibility of
the aggregation process. Our simulations use a “random
parking” algorithm [23–26] to model the formation of
clusters. The algorithm involves attaching large spheres
to randomly selected positions on the surface of a small
sphere, subject to a no-overlap constraint [19]. We do not
model the finite range of the interactions, which in both
experimental systems is small compared to the particle
size, or the diffusion of the particles prior to binding. In
accord with experimental observations, the particles are
not allowed to rearrange once bound. We repeat the pro-
cess numerically to obtain distributions of cluster sizes as
a function of a single parameter, α.

The simulations find a 100% yield of tetramers at the
size ratio α ≈ 2.41. As in the experiments, the large
particles in these tetramers are not densely packed, and
the clusters are therefore distorted tetrahedra. We also
find that while the yield of any particular cluster can be
maximized by varying α (Figure 2a), the yield approaches
100% only for dimers (N = 2) and tetramers (N = 4).
Interestingly, the yield curve for tetramers has a cusp at
its peak, showing that the size ratio αc at the maximum
is a mathematical critical point.

The simulated distributions agree well with those
found experimentally (Figure 2b,c) for both electro-
static and DNA-mediated interactions. For instance,
at α = 2.45 with electrostatic interactions, we find a
sharply-peaked distribution consisting almost entirely of
tetramers. This value of α is close to but not precisely at
the critical value, so a small yield of trimers is predicted
and observed experimentally. In contrast, at α = 1.90
we find a mixture of mostly N = 4 and N = 5 clusters
in both the DNA system and simulations. Some discrep-
ancy arises between the simulated and experimental his-
tograms because the yield curves in Figure 2a are steep;
a slight error in the effective size ratio can shift the clus-
ter distribution. Nevertheless, the random sphere park-
ing model successfully reproduces both the large yield
of tetrahedra near αc and the details of the measured
histograms at various other α.

That we can reproduce the same phenomenon in two
different experimental systems and in a one-parameter
model suggests that the critical size ratio αc has a uni-
versal, geometrical origin. Intuitively one might expect
that it is related to packing constraints on the large
spheres. Other theoretical studies of random sphere
parking [23, 24] have calculated the maximum number
of large spheres Nmax that can fit around a small sphere
at a given α. However, this bound cannot by itself ex-
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FIG. 2. (a) Yield curves, as determined by simulations, for
N -particle clusters, 2 ≤ N ≤ 8, where the critical size ratio
αc is marked with a black line. Below are histograms for (b)
DNA-labeled particles (blue) at α = 1.90 and (c) charged
particles (red) at α = 2.45, as observed in experiments and
as predicted from simulations (gray). Error bars are 95%
confidence intervals (Wilson score interval method).

plain why the yield of tetramers can reach 100% while
that of other clusters, such as trimers or hexamers, can-
not. At a given α, it tells us only why no clusters larger
than Nmax(α) can form, but it says nothing about the
probability of forming smaller clusters with different ar-
rangements.

Therefore we also examine a different bound, one not
previously discussed in the context of random sphere
parking: the “minimum parking” curve Nmin(α). Nmin

is the smallest number of hard spheres that can be po-
sitioned on a smaller sphere such that another sphere
cannot fit. To understand this bound, consider a simple,
one-dimensional analogy to car parking on a busy city
street, where if a space opens up that is large enough to
fit a car, it is filled. The minimum parking number occurs
when all drivers have been equally inconsiderate, leaving
spaces between their parked cars that are all slightly too
small for another car to fit. This lower bound is meaning-
ful only at long times, when all available parking spaces
have been filled. The long-time limit holds also for our
experiments and simulations, which we carry out until
the average cluster size has saturated.

Whereas the upper bound Nmax(α) is straightfor-
wardly related to solutions of the well-known spherical
packing problem [13, 27], the calculation of the lower
bound Nmin(α) requires a different approach. In our
clusters, the distance between the centers of any two big
spheres must be at least 2Rbig. Consider then a sphere
of radius (Rsmall + Rbig) that circumscribes the centers
of the parked spheres. If this sphere is completely cov-
ered with N circles of radius 2Rbig, it will be impossible
to add an (N + 1)th large sphere. We are led naturally
to the spherical covering problem, a problem with a rich
history in mathematics. Like spherical packings, spheri-
cal coverings are solutions to an extremum problem: they
are arrangements of N points on a sphere that minimize
the largest distance between any location on the sphere
surface and the closest point [13]. But unlike spheri-
cal packings, spherical coverings need not correspond to
arrangements of non-overlapping spheres. We therefore
solve for the minimum parking curve by examining the
solutions to the spherical covering problem [27] at each
N and manually verifying that they correspond to non-
overlapping configurations [19].

Our analytical results for the bounds reveal why αc is
a special point: it is the only non-trivial point where the
calculated maximum and minimum parking curves come
together (Figure 3). Analytically we find the location of
the critical value to be αc = (1 +

√
2) ≈ 2.41, very close

to the values where the experimental distributions are
peaked. At α slightly larger than this value, the mini-
mum parking configuration corresponds to two spheres
placed at opposite poles (Nmin = 2), and the maximum
N is obtained by first parking three large spheres next to
one another, so that there is room for one more sphere
to park (Nmax = 4). At α slightly smaller than αc, the
big spheres can park along orthogonal axes about the
small sphere to make an octahedron (Nmax = 6). The
minimum N is obtained by placing four spheres as far
from each other as possible, so as to make the addition
of a fifth impossible (Nmin = 4). Thus as we increase α
through αc, Nmax goes from 6 to 4 and Nmin from 4 to
2, and the two curves become infinitesimally close.

The parking process is therefore geometrically con-
strained to yield clusters with exactly N = 4 particles
in the limit α→ αc. A simple geometric argument sheds
some light on this result. At αc there is always room for
four large spheres to park. Parking more spheres requires
that at least three park precisely along a great circle of
the smaller particle, but the probability of this happening
randomly is zero. Thus irreversible binary aggregation,
a stochastic process, has a deterministic feature at the
critical size ratio: although the space between the large
spheres can vary, all clusters must be tetramers. Our nu-
merical approach confirms that the statistical dispersion
in the cluster size distribution vanishes at αc, as shown
in Figure 3.

The experimental and simulated distributions differ
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FIG. 3. Nmax (solid gray) and Nmin (black) as functions of
α. Cluster images show sphere configurations at discontinu-
ities of these curves. Average cluster sizes from simulations
(dashed gray) and experiments (blue and red data points)
are shown. We characterize the statistical dispersion in each
distribution by the average absolute deviation from the me-
dian, indicated by dotted light gray lines for simulations and
vertical bars for experiments.

slightly due to two effects. First, the measured sizes tend
to be smaller than the simulated ones because a few park-
ing spaces remain unfilled even at long times. This effect
is more pronounced for larger spheres, which diffuse more
slowly and encounter the small spheres less frequently.
The systems most affected are the electrostatic ones at
α = 3.06 and 4.29. Second, the experimental size ra-
tios can vary by 5% due to polydispersity. Both of these
factors increase the width in the experimental distribu-
tions and diminish the achievable yield of tetramers near
αc. The random parking model also assumes the inter-
actions are infinitesimally short-ranged and isotropic. It
would not be valid if, for example, there were surface
inhomogeneities on length scales comparable to the par-
ticle radii. Nevertheless, the experimental data indicate
that near αc a tetramer yield of at least 90% is possi-
ble, and the model is useful for predicting cluster size
distributions in two very different colloidal systems.

These results have both fundamental and practical
consequences. On the fundamental side, the particle size
ratio could affect the jamming threshold in bulk pack-
ings of bidisperse spheres. Previous simulations of these
systems have shown that the distribution of coordina-
tion numbers also depends on the size ratio [28] and may
be modeled using random parking [25]. This contrasts
with dense atomic systems like metallic glasses [15, 16] in
which the atoms have some freedom to rearrange locally.
In these systems packing constraints may explain struc-
ture and coordination better than parking arguments.

On the practical side, this random aggregation pro-

cess is a simple way to mass produce tetrahedral clus-
ters in theoretically 100% yield. Although the tetrahe-
dra we produce are irregular in that the distance be-
tween the large spheres can vary, it may well be possible
to form large quantities of symmetric tetrahedra simply
by shrinking the small spheres after the tetramers have
formed [29]. An additional step, such as density gradient
centrifugation [2], will also be required to separate the
assembled clusters from the many unbound large par-
ticles. Furthermore, although the yield will approach
100% only for dimers and tetramers, the yield of any
N -particle cluster can be maximized by choosing the ap-
propriate size ratio. For instance, the yield of octahedral
clusters, also promising candidates for building metama-
terials [10], may surpass 70% at α = 1.42.

The size ratio in binary colloidal systems thus emerges
as a valuable control parameter for directed self-assembly.
Moreover, because it does not require precise control over
the interactions, random parking offers a robust and sim-
ple way to make colloidal clusters that are more monodis-
perse than those prepared through other methods [2].
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