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A single-domain nanomagnet is a basic example of system where relaxation from high to low energy
is probabilistic in nature even when thermal fluctuations are neglected. The reason is the presence
of multiple stable states combined with extreme sensitivity to initial conditions. It is demonstrated
that for this system the probability of relaxing from high energies to one of the stable magnetization
orientations can be tuned to whatever desired value between 0 and 1 by applying a small transverse
magnetic field of appropriate amplitude. In particular, exact analytical predictions are derived for
the conditions under which the probability of reaching one of the stable states becomes exactly 0 or
1. Under these conditions, magnetization relaxation is totally insensitive to initial conditions and
the final state can be predicted with certainty, a feature that could be exploited to devise novel
magnetization switching strategies or novel methods for the measurement of the magnetization
damping constant.

Single-domain nanomagnets occupy a central position
in the research on magnetic phenomena and applications
at sub-micrometer scales, like coherent magnetization
switching [1–4], current-induced magnetic torques [5–8],
nanomagnet logic [9]. Also, they are appealing systems
for the study of the ultimate thermodynamic limits of
computation, expressed by Landauer’s principle [10–12].

Fundamental as well as application-oriented research
in this field revolves around the central question: how
can one drive a nanomagnet to a prescribed final magne-
tization state ? The simplest answer, which is to apply a
sufficiently large magnetic field that destroys all magnetic
energy minima except one, is at the core of the classical
Stoner-Wohlfarth model [13]. However, this strategy is
unsatisfactory in many respects, and the search for more
advanced alternatives has become the key issue in recent
years, in relation for example to precessional [14–16] or
spin-torque-driven [8, 17, 18] magnetization switching.

A striking feature revealing that a general answer to
the previous question is far from trivial is the fine inter-
lacing of the basins of attraction of stable magnetization
states under zero external field (Fig. 1(a)). This interlac-
ing is the consequence of dissipative mechanisms which
are a rather weak perturbation of constant-energy pre-
cessional dynamics. The result is an extreme sensitivity
to initial conditions. As a consequence, a nanomagnet
brought to an unstable initial state will relax to a final
magnetization orientation which appears to be unpre-
dictable, because control of initial conditions is always
imperfect, due to thermal fluctuations or other distur-
bances [19].

In the language of dynamical system theory, the pic-
ture we are describing is that of a weakly dissipative sys-
tem where multiple stable states exist and sensitivity to
initial conditions introduces probabilistic aspects in an
otherwise purely deterministic dynamics [20–23]. This
problem is of very general nature [24, 25], and is en-

countered in many other fields of science, from stability
of planetary motion in the solar system, to motion of
charged particles in electric and magnetic fields, to prop-
agation of electromagnetic waves (see [26] and references
therein).

A central role is played in weakly dissipative systems
by the notion of averaging and separatrix crossing [21–
23]. The fact is that weak dissipation implies the exis-
tence of two distinct time scales: a fast scale on which
motion at nearly constant energy takes place; and a slow
scale on which energy decreases due to dissipation. The
slow relaxation in energy, revealed by averaging over the
fast scale, provides the core information about the behav-
ior of the system. However, when the system can relax
to multiple low-energy states the energy description be-
comes incomplete, because one needs additional informa-
tion about which low-energy state is selected when the
system crosses the saddle separatrix between high and
low energy. This additional information is expressed in
probabilistic terms, by introducing the notion of proba-
bility Pi of relaxation from high energies to one of the
available stable states si.

In this Letter, we demonstrate that in a single-domain
nanomagnet the relaxation probabilities Pi can be tuned
to whatever desired value between 0 and 1 by apply-
ing a small transverse magnetic field. The field neither
breaks the mirror symmetry of the energy function with
respect to the final stable states nor introduces any im-
portant distortion in the energy profile. Nevertheless,
the small energy term that is added to the dynamics is
enough to alter the effect of the weak dissipative part in a
way that drastically modifies the relaxation probabilities.
In particular, one can achieve a complete restructuring
of the basins of attraction, in which the probability of
reaching one of the stable states becomes exactly 0 or 1
(Fig. 1(b)). Under these conditions, magnetization re-
laxation is totally insensitive to initial conditions and the
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FIG. 1: Single-domain nanomagnet with easy, intermediate,
and hard magnetic axes along ex, ey, and ez directions, re-
spectively. Figure shows numerically computed basins of at-
traction of mx > 0 ( gray ) and mx < 0 ( white ) stable
states under transverse external field haey. Representation
is in (mz, φ) plane. Abscissa: −π/2 ≤ φ < 3π/2. Ordinate:
−1 < mz < 1. (a): ha = 0. (b): ha = 0.005477225. (c):
ha = 0.01635185. Value in (b) coincides with α

√

DzyDyx.
Bold oriented lines represent saddle connections discussed in
the text. Parameters: Dyx = 0.3, Dzy = 1, α = 0.01.

final state can be predicted with certainty, a feature that
could be exploited to devise novel magnetization switch-
ing strategies.

To start the technical discussion, consider a single-
domain nanomagnet with total (i.e., crystal + shape)
ellipsoidal anisotropy and principal axes along x, y, z.
Assume that these axes represent the magnetic easy,
intermediate, and hard axes, respectively. Then, the
anisotropy coefficients are ordered in the following man-
ner: Dx < Dy < Dz. For example, one has: Dx <
0, Dy ∼ 0, Dz ∼ 1 for a nanodot with in-plane anisotropy
along x. In the subsequent discussion, we shall use the

quantities: Dyx = Dy −Dx, Dzy = Dz −Dy, which are
both positive under the mentioned assumptions.
Assume that the nanomagnet is subjected to the ex-

ternal magnetic field ha = ha ey applied along the inter-
mediate axis. Then the energy of the system is:

g(m;ha)−
1

2
Dy =

1

2

(

Dzym
2

z −Dyxm
2

x

)

− hamy . (1)

In this expression, the energy is written in dimensionless
form, in units of µ0M

2

sV , where V is the nanomagnet
volume and Ms is the spontaneous magnetization. The
vector m represents the normalized ( |m|2 = 1 ) mag-
netization, while ha is the dimensionless external field
amplitude, measured in units of Ms. In subsequent ex-
pressions, we shall omit the inessential Dy/2 offset.
Our analysis is limited to the field interval 0 ≤ ha ≤

Dyx, in which the energy displays the following critical
points:

• Two symmetric energy minima s1 and s2 in the
regions mx > 0 and mx < 0, respectively.

• Two saddles d and d′ at mx = 0, my = ±1, mz = 0,
with energy gd = −ha, gd′ = ha, respectively.

• Two energy maxima u1 and u2 in the regions mz >
0 and mz < 0, respectively.

When thermal fluctuations can be neglected, mag-
netization relaxation is governed by the deterministic
Landau-Lifshitz (LL) equation [27], which is expressed
in dimensionless form as:

dm

d t
= −m× heff − αm× (m× heff) . (2)

In this equation, heff = −∂g/∂m is the effective field,
α is the damping constant, and t is dimensionless time,
measured in units of (γMs)

−1 ( γ is the absolute value
of the gyromagnetic ratio ). From Eq. (1) one finds that
heff = h

M
+ ha ey, where:

h
M
= Dyxmxex −Dzymzez , (3)

ex, ey, and ez being unit vectors along the reference axes.
When convenient, cylindrical m coordinates (mz, φ) will
be used, defined by the relations: mx =

√

1−m2
z cosφ,

my =
√

1−m2
z sinφ.

To understand the physical origin of the dramatic basin
restructuring illustrated by Fig. 1, consider first the pure
precessional dynamics under α = 0 and ha = 0:

dm

d t
= −m× h

M
. (4)



3

FIG. 2: Representation of magnetization dynamics in (mz, φ)
plane: −π/2 ≤ φ < 3π/2, −1 < mz < 1. (a): Precessional
dynamics under α = 0 and ha = 0. Oriented lines represent
saddle-to-saddle connections. (b): Formation of saddle con-
nections in dissipative dynamics at ha = α

√

DzyDyx (com-
pare with Fig. 1(b)).

This dynamics is dominated by the four saddle-to-saddle
trajectories (heteroclinic saddle connections) shown in
Fig. 2(a). These connections are curves of constant en-
ergy g = 0, which subdivide the (mz , φ) plane into two
low-energy regions around the energy minima s1 and s2
and two high-energy regions at mz > 0 and mz < 0,
respectively.

The introduction of damping breaks all these connec-
tions, because energy decreases along any dissipative
trajectory, and therefore it is no longer possible that
a trajectory may connect saddles with identical energy
gd = gd′ = 0. However, if one also introduces the trans-
verse field haey, then the saddles acquire different ener-
gies (gd = −ha, gd′ = ha), and a trajectory from saddle
to saddle may be realized if the energy dissipated along
the trajectory coincides with the saddle energy splitting.
Indeed, when this is the case, two connections are si-
multaneously formed because of symmetry (Fig. 2(b)).
When these dissipative connections are formed, they cre-
ate an impenetrable barrier to magnetization dynamics.
The result is that no trajectory originated from the vicin-
ity of the energy maximum u1 at mz > 0 can reach s2,
and similarly no trajectory from the vicinity of u2 can
reach s1. The phase portrait is reduced to fully sepa-
rated basins of attraction, with no interlacing, and mag-
netization relaxation becomes totally insensitive to initial
conditions (Fig. 1(b)).

The value of ha at which the connections shown in
Fig. 2(b) are formed under given damping α can be de-

termined by exploiting the following remarkable property
of the dissipative dynamics, demonstrated below:

• the dissipative connections shown in Fig. 2(b) are
identical in geometric shape to the two correspond-
ing conservative connections present in Fig. 2(a).

In other words, the combined introduction of damping
and external field distorts all the trajectories of the con-
servative dynamics (4), except for the two connections
shown in Fig. 2(b), which remain unchanged if the field
is properly tuned. It is important to stress that, although
the shape of the connections remains the same, the mag-
netization variation along them is rescaled in time by a
proper factor, also derived below.
To prove all this, consider, in Fig. 2(a), one of

the two conservative connections for which mx and mz

have opposite sign. The connection is a trajectory for
which ha = 0 and g = 0. Consequently, one obtains
from Eq. (1) that it is characterized by the relation:
√

Dyx mx = −
√

Dzy mz . Use of this relation in Eq.

(3) yields: h
M
=

√

DzyDyx md′d(t) × ey, where md′d(t)
represents the solution of Eq. (4) associated with the
connection.
Consider now the vector function md′d(rt), where r is

a factor to be determined. The expression derived above
for h

M
is valid also for md′d(rt). Thus:

h
M
= Qmd′d(rt) × ey , Q =

√

DzyDyx . (5)

Furthermore, since md′d(t) satisfies Eq. (4), one has:

d

dt
md′d(rt) = −rQmd′d(rt) ×

[

md′d(rt)× ey

]

, (6)

where use has been made of Eq. (5). By substituting
md′d(rt) for m in Eq. (2), by using Eqs. (5) and (6),
and by taking into account that heff = h

M
+ haey, one

reduces Eq. (2) to the equation:

[

rQ − (Q+ αha)
]

md′d × (md′d × ey)

− (ha − αQ) md′d × ey = 0 . (7)

Inspection of Eq. (7) reveals that md′d(rt) is indeed a
solution of the general LL equation provided:

ha = αQ , r = 1 + α2 . (8)

The condition ha = αQ for the formation of the saddle
connection is exact for any value of damping. Since the
saddle energy splitting is equal to 2ha, one concludes
that 2αQ represents the amount of energy dissipated in
the magnetization motion along the connection.
Other conditions for the formation of saddle connec-

tions can be derived in the case when both α and ha
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are sufficiently small. Indeed, in this case any saddle-
to-saddle trajectory will stay close to the zero-damping
connections of Fig. 2(a). But there are multiple paths
connecting d′ to d by staying close to these connections.
These paths consist of a first part [d′d] from d′ to the
vicinity of d, followed by a certain number of almost
closed loops [dd′d] alternatively going around s1 or s2.
The energy dissipation along these paths is quantized,
because it is approximately equal to 2αQ for the first
[d′d] part and then to 4αQ for each of the subsequent
[dd′d] loops. Since the connection must connect two sad-
dles whose energy difference is 2 ha, the condition for
the formation of a connection containing k [dd′d] loops
is 2ha ≃ 2αQ + 4kαQ. Hence, the set of critical fields
at which saddle-to-saddle connections are realized under
small α and ha is:

hk ≃ (2k + 1)αQ , k = 0, 1, 2, . . . . (9)

The first critical field h0 coincides with the field in Eq.
(8). This field is of the order of 1 mT in a system for
which µ0Ms ∼ 1 T, α ∼ 0.01, Q ∼ 0.1. Figures 1(b)
and 1(c) show the basin structure existing at the critical
fields h0 and h1, respectively.
Basin restructuring was tested by numerically integrat-

ing the LL equation for a large number (∼ 106) of ini-
tial conditions distributed at random in the high-energy
region with mz > 0. The integration was repeatedly
carried out under progressively increasing values of the
external field ha. The number of trajectories reaching
the s2 energy minimum always dropped down to exactly
zero when the condition ha = α

√

DzyDyx was reached.
It was also numerically checked that the same effect peri-
odically appeared under further increase of the external
field (Fig. 1(c)). The corresponding numerical estimate
for the critical field h1 (see figure caption) is within 1%
from the prediction of Eq. (9).
One can represent the sequence (9) by straight lines

in the plane (ha, α) (Fig. 3(a)). Along each line, the
probability of reaching s1 starting from high-energy ini-
tial conditions with mz > 0 is either 1 or 0. Figure 3
has important implications. Indeed, in the literature on
weakly dissipative systems the probability Pi of relax-
ation to the stable state si is mathematically defined by
the following double, non-interchangeable limit [22]:

Pi = lim
D→0

lim
α→0

ni

n
, (10)

where ni/n represents the fraction of states that relax to
si starting from high-energy initial conditions within a
certain distance D from a given state u. The definition
(10) is obviously based on the assumption that the limit
of ni/n for α → 0 does exist. In other words, one assumes
that the only effect of a decrease in dissipation is that the
fast and slow time scales get more and more separated,

FIG. 3: (a): Family of critical lines (9) in (ha, α) plane. Digits
1 and 0 represent the value of P1 along the critical line. The
arrow indicates the presence of additional critical lines, not
shown in the figure, down to zero slope. (b): Corresponding
behavior of P1 as a function of ha under constant α.

but that otherwise no qualitative change takes place in
the dynamics. Figure 3(a) shows that this assumption
cannot be made for the problem under discussion. Given
the external field ha, the probability P1 indefinitely oscil-
lates between 0 and 1 when α → 0, since all the critical
lines of the family (9) are progressively crossed, and no
limit exists.

As will be discussed in detail in a more extended pa-
per under preparation, the notion of limiting probability
of relaxation to one of the magnetization energy minima
can be restored by a phase-flow description of magnetiza-
tion relaxation. In this framework, the probability P1 is
defined in the joint limit (α → 0, ha → 0) under constant
ratio R = ha/α. The phase-flow analysis predicts that P1

will exhibit a piecewise linear dependence on R, reach-
ing its extremum values, 0 or 1, in correspondence of the
critical conditions (9) (Fig. 3(b)). Also this prediction
was tested and confirmed by computer simulations.

There exists a direct connection between the methods
discussed in this Letter and spin-transfer-driven mag-
netization dynamics. Indeed, the time-rescaled saddle-
to-saddle trajectory md′d(rt) remains an exact solution
even when one includes in Eq. (2) a spin-transfer torque
βm× (m× ey), carried by a current β of electrons with
spin polarisation along ey. One can verify that the condi-
tion for the formation of the connection is still ha = αQ,
and is therefore unaffected by the presence of the current.
The current affects the time-rescaling factor r, which in
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this case is equal to:

r = 1 + α2 − β/Q . (11)

This reveals that one can slow down the motion along
the saddle connection to arbitrarily low rates by properly
tuning the spin-polarized current density.
One expects that thermal fluctuations will mask the

phenomena discussed in this Letter when the thermal
energy kBT becomes comparable with the characteris-
tic saddle energy splitting 2αQ. The condition for the
observability of basin restructuring is therefore: kBT ≪
2αQµ0M

2

sV . This yields T ≪ 102 K for a nanodot with
V ∼ 10−24 m3, µ0Ms ∼ 1 T, α ∼ 10−2, Q ∼ 0.1. Thus,
experiments at cryogenic temperatures should fully re-
veal basin restructuring phenomena. In particular, one
should be able to measure α by means of experiments
probing relaxation probabilities in arrays of weakly in-
teracting nanodots brought close to the critical condition
ha = αQ. This measurement of the damping constant
would be related to the far-from-equilibrium dynamics
of the nanodots at energies close to the saddle energy,
quite differently from the conditions realized in quasi-
equilibrium measurement methods [28].
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