
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Majorana Fermion Realization of a Two-Channel Kondo
Effect in a Junction of Three Quantum Ising Chains

A. M. Tsvelik
Phys. Rev. Lett. 110, 147202 — Published  2 April 2013

DOI: 10.1103/PhysRevLett.110.147202

http://dx.doi.org/10.1103/PhysRevLett.110.147202


LY13314

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Majorana fermion realization of 2-channel Kondo effect in a junction of three

quantum Ising chains
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It is shown that a junction of three critical quantum Ising chains (∆-junction) can be described
as a 2-channel Kondo model with a spin S=1/2 localized at the junction, which is composed of the
respective Ising, zero energy boundary Majorana modes.
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Majorana zero energy modes (MZEMs) and Majorana
fermions in general have recently become a very popu-
lar topic. The interest is mainly caused by non-Abelian
properties of MZEMs related to the fact that for a set of
N modes the corresponding operators satisfy the Clifford
algebra

{ai, aj} = 2δij , i, j = 1, ...N, (1)

and as such represent a realization of a spinor represen-
tation of the O(N) group.
Theory predicts that MZEMs will appear at topologi-

cal defects such as vortices in two- and domain walls in
one dimension. Majorana fermions can be represented as
the operator a, which is a linear combination of fermionic
creation and annihilation operator:

a = (f + f+)/
√
2, a2 = 1, a = a+, (2)

and as such cannot be used to create or destroy a state.
To do this one needs a pair of Majorana fermions a1, a2
from which creation and annihilation operators can be
constructed:

f = (a1 + ia2)/
√
2, f+ = (a1 − ia2)/

√
2. (3)

In systems with periodic boundary conditions Majorana
modes appear in pairs; their tunneling Hamiltonian is

Htunn = ita1a2 = t(f+f − 1/2). (4)

Thus for a finite chain the ground state degeneracy is
broken, but since t decays fast with the system size, for
sufficiently large systems one can think about boundary
Majorana modes as independent. Due to their nonlo-
cality such Majorana modes have attracted a particular
attention in conjunction with quantum computation. Al-
though in one dimension the task of generating Majorana
modes is much easier, it is more difficult to take advan-
tage of the non-Abelian nature of MZEMs because to
exchange them one needs to manuever beyond one di-
mension. It has been suggested that one can resolve the
conundrum with a help of the so-called Y - or T -junction.
In [1] it was suggested to use T -junctions to implement
braiding operations of Majorana fermions.
In this paper I study a slightly more complicated junc-

tion of three quantum Ising models coupled together at

one point, called ∆-junction. The Hamiltonian describes
three quantum Ising chains

HIsing,p =

N
∑

j=1

[

− Jσx
p (j)σ

x
p (j + 1) + hσz

p(j)
]

(5)

coupled together in the ∆-junction:

H = −J12σ
x
1 (1)σ

x
2 (1)− J23σ

x
2 (1)σ

x
3 (1)− J13σ

x
1 (1)σ

x
3 (1)

+

3
∑

p=1

HIsing,p (6)

I assume that 0 < Jpq << J . ∆-junction becomes T -
junction when one of the exchange integrals Jab is zero.
Models (5) are equivalent to noninteracting Majorana
fermions by means of Jordan-Wigner transformation. To
extend this formalism for Ising models on star graphs
Crampe and Trombettoni suggested the introduction of
Klein factors [2] to mark the different chains:

cp(j) = ap

(

j−1
∏

k=1

σz
p(k)

)

σ−

p (j), (7)

σ−

p (j) = apcp(j) exp

[

iπ

j−1
∑

k=1

c+p (k)cp(k)

]

,

σz
p(j) = c+p (j)cp(j)− 1/2,

where Klein factors ap satisfy the Clifford algebra (1) and
commute with all spin operators. Anticommutativity of
a’s from different chains establishes commutativity of the
spin operators located at different chains. Hence, the
emergence of MZEMs in the fermionic formulation of the
problem is quite natural. Notice also that the boundary
spins a have particularly simple expression in terms of
fermions:

σx
p (1) = ap[cp(1)− c+p (1)], (8)

which is a lattice generalization of the expression ob-
tained in [9] (see Eq. (4.25)).

Substituting (7) into (5,6) we obtain the following
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fermionic Hamiltonian:

H =

3
∑

p=1

HIsing,p + V (9)

HIsing =
∑

j=1

{

− J [c+(j + 1)− c(j + 1)][c+(j) + c(j)] +

hc+(j)c(j)
}

(10)

V =
∑

p>q

Jpqapaq[cp(1)− c+p (1)][cq(1)− c+q (1)] (11)

As we see, the MZEMs represented by the Klein factors
do not appear in the expressions for the bulk Hamilto-
nians (10). They appear only in the term describing the
junction and for this reason their combination can be in-
terpreted as a quantum degree of freedom located at the
junction. For a junction of three chains this degree of
freedom can be described as S=1/2 spin [10]:

Sp =
i

4
ǫpqtaqat, (12)

It will be shown that for nearly critical chains |J −
h| << J the MZEMs are subject of intense screening
by gapless bulk modes and model (10,9) is equivalent to
the overscreened two-channel Kondo model. The latter
model is interesting since it possesses a non-Fermi liquid
fixed point [3] with a residual ground state entropy [5],[6].
The two-channel Kondo model has been extensively stud-
ied and a plethora of nonperturbative results have been
obtained for it by means of Bethe ansatz [4],[5],[6] and
conformal field theory (see, for instance, [7]). The equiv-
alence between the ∆-junction model (6) and the two-
channel Kondo model allows one to use these results.
To establish the aforementioned relation between the

junction of critical Ising chains and the Kondo model we
need to switch to the continuous description of model
(10,9) valid for |J − h| << J . To this end we use the
Majorana fermions

ξ(j) = c+(j) + c(j), ρ(j) = i[c+(j)− c(j)], (13)

which passes to the continuum limit and introduce the
right- and the left-moving modes χR,L(x) = [ρ(x = jb)±
ξ(x = jb)]/

√
2b, where b is the lattice constant. The

resulting Lagrangian for (10) is

L =

∫

∞

0

dx
[1

2
χR(∂τ − iv∂x)χR +

1

2
χL(∂τ + iv∂x)χL +

iMχLχR

]

+
i

2
a∂τa, (14)

where v = Jb, M = J−h and a free boundary condition

χR(0) = χL(0) (15)

This condition corresponds to the fact that the bound-
ary spin (8) is not fixed. Lagrangian (14) coincides with

the one obtained for the Ising model with the bound-
ary in [9]. Let us now set M = 0. With bound-
ary condition (15) one can introduce a chiral fermion
χ(x) = θ(x)χR(x) + θ(−x)χL(−x) and extend the in-
tegration in (14) on the entire x-axis. This can be done
safely since χ(x) is continuous at x = 0. Taking into
account interaction term (11) and switching back to the
Hamiltonian formalism, I arrive to the following effective
theory for the ∆-junction of three critical Ising chains:

Heff = i
∑

p

GpS
pǫpqtχq(0)χt(0) +

iv

2

∫

∞

−∞

dxχp∂xχp,(16)

where G1 = 2bJ23, G2 = 2bJ13, G3 = 2bJ12. This de-
scription is valid at energies << J . I used the equiv-
alence between bilinears of MZEMs and components of
spin S=1/2 (12) to replace them with the spin operator.
Model (16) describes the two-channel Kondo problem

written in the form introduced in [8]. This equivalence is
based on the fact that the fermionic bilinears coupled to
the ”spin”

J a =
i

2
ǫabcχbχc,

are SU2(2) currents, that satisfy the same commutation
relations as the corresponding fermionic bilinears in the
2-channel Kondo model.
If the bare interactions are ferromagnetic (−Jab < 0,

the same sign as the bulk exchange), the Kondo exchange
in (16) is antiferromagnetic and the interaction scales to
the intermediate coupling critical point. Otherwise it is
marginally irrelevant. A similar Kondo model (the 4-
channel one) has recently been suggested in [11] in the
context of the so-called topological Kondo effect. In [2]
it was found that 4-channel Kondo model describes ∆-
junction of XX spin S=1/2 chains.
As was established in [8], the low energy Lagrangian

describing the junction dynamics at energies less than
the Kondo temperature TK :

Leff =
i

2
ǫ∂τ ǫ+ gǫχ1(0)χ2(0)χ3(0) +

3
∑

p=1

L[χp], (17)

where g ∼ TK and L[χp] describes three chiral Majorana
modes of the bulk and ǫ is a new MZEM describing the
residual degeneracy of the ground state. This MZEM is
nonlocal in terms of the fields of model (16). The critical
point is characterized by a single zero energy Majorana
fermion coupled to the bulk by the irrelevant operator.
The scaling towards this boundary critical point takes

place even if one of the couplings is zero. Then the ∆-
junction becomes a T -junction. Indeed, the first loop
renormalization group equations for the running coupling
constants are

dga
d lnΛ

= −gbgc, (b 6= c 6= a), (18)

where ga(J) = 2Ga/πv. Hence even if, for instance,
g1(J) = 0, the coupling g1 will be generated by two other
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couplings under renormalization. Thus the model flows
to the 2-channel Kondo critical point irrespectively of the
ratios between the couplings Ga; it is well known that the
multichannel Kondo model fixed point is unaffected by
the anisotropy [12]. This is a remarkable fact meaning
that the low energy properties of the junction are robust
with respect to anisotropy of the couplings. The Kondo
scale TK corresponds to the energy where all dimension-
less coupligs ga become ∼ 1 and is a function of the bare
couplings Ga and the ultraviolet cut-off J , for equal cou-
plings G1 = G2 = G3 it is exponentially small in G.
Another remarkable fact is that the local pseudospin

(12) constructed from the MZEMs of different chains is
not a local operator of Ising chains and therefore there
is no ”magnetic field” which can be attached to it. How-
ever, the critical flow can be destroyed by application of
an additional boundary magnetic field δh on at least one
chain (for instance, to the chain number 1). According
to (8) this introduces a relevant operator

δH = iδha1χ1(0). (19)

This perturbation effectively eliminates the terms with
G2, G3 in the interaction term in (16). The remaining
term contains just one spin component and as a result
does not experience any renormalization. This is equiva-
lent to decoupling of one of the chains from the junction.
Let us consider two ∆-junctions coupled together. Zero

modes from one of them we denote η−, from the other
η+. The Hamiltonian (5,6) acquires a correction in the
form of tunneling term:

itaη
+
a η

−

a , t ∼ 1/L. (20)

This term competes with the Kondo screening which can

be established looking at the mean field solution where
the interaction is decoupled by fields ∆σ so that the La-
grangian becomes (I consider the isotropic interaction):

L[χσ] + ∆2
σ/2G+ i∆ση

σ
aχ

σ
a(0) + itη+a η

−

a , σ = ±1.(21)

The saddle point action is

1

2G
(∆2

+ +∆2
−
)− 3

8π

∫

dω ln[(|ω|+∆+)(|ω|+∆−) + t2](22)

yielding

∆σ = TK − t, (t < TK); ∆σ = 0, (t > TK) (23)

where TK ∼ exp(−Const/G). From here we may con-
clude that the Kondo effect disappears at t > TK .

The current study indicates that a ∆-junction (with T -
junction being its particular case) of nearly critical quan-
tum Ising models behaves as an active element where
MZEMs undergo screening by the bulk excitations. At
low energies the system scales to the overscreened 2-
channel Kondo model critical point. This is an interest-
ing fact by itself since realization of overscreened Kondo
effect is a notoriously difficult task. At the same time
nearly critical quantum Ising systems can be realized in
Josephson junction arrays [13].
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