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Reduced dimensionality has long been regarded as an impattategy for increasing thermoelectric per-
formance, for example in superlattices and other engidestreictures. Here we point out and illustrate by
examples that three dimensiotailk materials can be made to behave as if they were two dimendionathe
point of view of thermoelectric performance. Implicatidosthe discovery of new practical thermoelectrics are
discussed.

INTRODUCTION isotropic. Very highZT is therefore realized only in single
crystals for in-plane conduction or at least in highly teztl

Thermoelectric performance is quantified by the figure of¢€ramic. Here we propose an alternate resolution of the co-
merit, ZT = 0T /k, wherea is the electrical conductivity, nundrum of higho and highS using low dimensional elec-
K is the thermal conductivitys is the thermopower (Seebeck ronic structures.
coefficient) andT is the absolute temperature. [1, 2] There We observe that it is possible to have an electronic struc-
is no known thermodynamic or other fundamental limitationture that is low dimensional in a material that is not low di-
onZT, but finding highZT materials is very challenging and mensional provided that symmetry is obeyed. This is known
only a few materials wittZ T significantly higher than unity in metallic materials, the best example being body centered
are known. The difficulty is that finding higAT requires  cubic Cr metal, where flat (i.e. 1D) parts of the Fermi surface
finding a material that combines transport properties tiat dyield a nesting induced spin density wave. [8] Another exam-
not normally occur together. Here we focus on the combinaple is the superconductor RuQy, which despite its tetrag-
tion of high thermopower and high conductivity. onal symmetry has flat one dimensional sheets of Fermi sur-
The lowT electrical conductivity of a metal or degenerate face that generate nesting induced peaks in its susceptibil
semiconductor depends on the electronic states and tlair sc[9, 10] Generally, these cases are large Fermi surface snetal
tering at the Fermi leveEr, specificallyg ON(Er) < V2 > T, which are not of interest as thermoelectrics. Howevergiger
with N the density of states; V2 > the average Fermi veloc- N0 Symmetry or other fundamental reason that this must be so
ity for the current direction, and an inverse scattering rate. and we begin by pointing out counterexamples.
[3, 4] The conductivity therefore improves as one mokes The face centered cubic rocksalt structure chalcogenides,
away from the band edge, as in that case both the velocitbTe, PbSe, PbS and SnTe are the basis of excellent ther-
andN(Eg) increase. The thermopower is different. At low moelectric materials. [1, 2] While the thermoelectric prop
T,S(T) O0T(do/dE)/o, i.e. S/T is large near the band edge erties of these materials have been discussed in terms-of var
where the logarithmic derivative @f with energy is high. ious physical models, band structure calculations contbine
Hicks and Dresselhaus suggested overcoming this conufwith standard Boltzmann transport theory can reproduce and
drum via quantum well structures. [5] They observed that inpredict their thermopowers, as illustrated by predictitors
a two dimensional system the dependencH (@) on energy  PbSe. [12, 13] As is well known, the valence bampetype)
for a parabolic band is a step function, meaning that forrthe i €lectronic structure is dominated hypoint hole pockets for
plane direction one expects a faster onset of the condtyctivi low carrier concentrations arid, while at higher carrier con-
with energy and furthermore, high8rfor given carrier con-  centrations and’ transport and other data imply additional
centration. Viewed in three dimensions, the Fermi surface€lectronic features, often discussed as a second heavy band
of superlattices or two dimensional semiconductors areén t [14—16] Band structure calculations show no second heavy
shape of cylinders or pipes running along the direction ef th band, but instead connections developing betweeb-{haint
layering rather than the spheres or ellipsoids of three dime pockets near, but not at, the valence band maximum.
sional doped semiconductors. We illustrate this in Fig. 1, which shows energy isosur-
However, most thermoelectric applications involve macro-faces for the near valence band edge of PbTe, PbSe, PbS and
scopic devices that are difficult to implement with superlat SnTe. These are based on calculations, including spir;orbi
tices and experience problems such as parasitic heat condudone with the augmented planewave plus local orbital method
tion in barrier layers of superlattices. Nonetheless, dme o [17] as implemented in the WIEN2k code. [18] We employed
serves that Ng&CoO,, representative of the highest perfor- the modified Becke-Johnson potential of Tran and Blaha (TB-
mance oxide thermoelectrics, and showing hi#tjh at high ~ mBJ), [19] which generally gives improved band gaps for sim-
carrier concentration, [6] has a very two dimensional elecple semiconductors and insulators. [19-21] Besides these d
tronic structure. [7] This material illustrates anotheolpr tails the calculations are similar to those presented ptesly.
lem with using 2D electronic systems as thermoelectrice. Th[12, 22—-30] The densities of states (not shown) show low val-
high electrical conductivity is realized only in the layenet  ues characteristic of a light band up to the energy wherk-the
perpendicular to them, while the heat conduction is morepoint pockets connect, where there is a sharp onset of dgteep



CALCULATIONS

PbTe PbSe

We here pursue calculations to describe the behavior of the
transport in the aforementioned “pipes” scenario. We atersi
a one band material with a pipe-like electronic structuee, b
ginning by assuming the electronic scattering tind€) in-
dependent of energy, i.e. the “constant scattering time ap-
proximation” (CSTA). This has been used with quantitative
accuracy to describe the thermopower of a substantial num-
PbS SnTe ber of thermoelectric materials [27, 31-38] so its usage is
on solid practical grounds. We also present results for the
thermopower and power factor in a case whef€) is in-
versely proportional to the electronic density-of-stadsscon-
sidered in Refs. 39—41; we will see that this model (which we
term “DSTA”) renders the two dimensional electronic struc-
ture scenario evemorefavorable relative to the three dimen-
sional electronic structure scenario. Note also that hexe w
consider two dimensionalectronicstructures irbulk mate-

FIG. 1. (col line) Calculated val band ant rials as opposed to the two-dimensiophysicalstructures in
. 1. (color online alculated valence band constaniggnsur- _ . . . .
faces of PbTe, PbSe, PbS and SnTe, at 0.25 eV, 0.49 6V, 0.61 Jlon bulkmaterials [42] such as nanowires, considered in these

and 0.41 eV below the valence band maximum, respectivelye ThlaiSt references.
corresponding carrier concentraf[ions in holes per unitazel0.005, Then we have the canonical expressions for the electrical
0.030, 0.054 and 0.016, respectively. conductivitya(T) and Seebeck coefficieB{T):

N

o(E) = N(E)V*(E)T(E) 1)

rising density of states, which is clearly beneficial foraibt o(T)=- /m dEo(E)d f(E —p)/dE )

ing enhance®&(T) at doping levels near the onset and was dis- ks © E—n

cussed in relation to the thermoelectric performance oePbT S(T) = ——/ dEc(E)——df(E—p)/dE (3)
X o . ed(T) J-w T

[27] Here we associate this with the pipes.

Qualitatively, the Fermi surface of a doped superlattice Ofyith f the Fermi functiong the electronic chargég Boltz-
_other_2D ;emlconductor is _cylmpirlcal running anng_theeks{a mann’s constant;(E) the scattering timey(E) the Fermi ve-
ing direction. The conductivity is low along the cylindern |ocity, 11 the chemical potential ard(E) the density of states.
high in the plane. Considering for example the conductivityThe tensor indices are suppressed for clarity, and theriateg

alongx fora CUk_’iC network of pipgs running aIOIKg, ky and _ tions in actual calculations involve a Brillouin-zone sum.
k; as is approximately the case in these materials, the pipes

alongky andk; will contribute as in a superlattice material ~We now compare the thermopower and power fa&far

in plane, while the pipes alorig will behave like the stack- ©Of two idealized Fermi surface topologies: a two dimensiona
ing direction and will not contribute to the conductivityh@is ~ cylindrical Fermi surface connecting the L-points of the fc
the energy dependence and other behavior are the same as Bfdlouin zone, as suggested by Figure 1, and a three dimen-
superlattice, including the enhanced 2D behavior of the the Sional spherical Fermi surface. Note that in actual mdteria
mopower, except that now the properties are isotropic due tG€rmi surfaces which contact Brillouin zone faces must do so

the cubic symmetry and superposition of pipes on differenfit perpendicular angles, so the pipes reconnect at therit-poi
directions. pockets, as in, for example, band structure calculations fo

PbTe. Both bands are assumed parabolic, and to ensure a fair
. . ,_comparison we choose the radial masses of the cylinder and
Clearly, the electronic structures of the chalcogenlde%phere equal. Additionally, as was noted by Ref. 43, in the
shown in Fig. 1 are approximations of this idealized behav'chalcogenide's the cylindri(;al band is twelve-fold .degétmr

ior. Nonetheless, they suggest elucidation of the behafior and we have assumed this here. For comparison purposes we

a cubic or other three dimensional semiconductor with a |0V\{ - -
i . . . ) ake the spherical Fermi surface to be twelve-fold degeeera
dimensional electronic structure in the sense discussegkab

This may be a useful paradigm in the search for new high per- Then within the CSTA the above integrals are easily eval-
formance thermoelectric materials. uated for both cases, yielding the following expressiorsgh



n =W/T, the reduced chemical potential.)

F
Seo(T) = gFi;zE:lli o ) 125 |
S (uV/K) - J
o3p(T) = %ZT (5) N 1 idfzjlzed 2D band;
So(T) =2 1 ©) b |
on(T) = 23pr;e:kr (7) 0ol (
Herep is the carrier density given as 200 |-
p— [ dENE)IE-H ®) 100} S
whereN(E) is the density of states, ‘ithe carrier effective 0005 0010 0050 0100 7‘:5‘00 P
mass, and F is the Fermi-Dirac integral, defined as
R = [X/(expx—n) + 1) ©

The 2/3 factor for the two-dimensional conductivity aribes ~ F!G- 2. (color online) (Main panel) The calculated thermepofor
e 2D (blue solid line) and 3D (red lines) cases. For the 2&eca

cause, eaCh_ of the cylinders Con_t”bu_tmg to _N(E)’ and_ henc e CSTA and DSTA give identical results, while for the 3D eas
p, conducts in qnly two of three dlrectlon_s. Finally, WE INCOT" the CSTA results are the heavy dashed line and the DSTA sesult
porate the relation of the reduced chemical potemgitd the  the dotted line. Carrier concentrations given per unit detet: the
carrier concentratiop, which is performed by inverting Eq. first principles calculated density-of-states of the twmelisional
8, as in Ref. 48. electronic feature in PbTe, as depicted in Figure 1.

We now move to the calculated results. We have assumed
(although the results do not sensitively depend on these as-
sumptions) an fcc cell of lattice constant 6 46band masses ~ (MW/m K)o S’
of 0.2 my, where my is the free electron mass, and fixed the 350
temperature at 1000 K, the approximate maximum operating  sof
temperature of the chalcogenides. We assume a doping in-

dependent scattering tinteof 10-1° sec, which yields high =

temperature conductivities of 100 - 100Q-cm)~, in line 20¢

with experimental results. Figure 2 depicts the calculéted 15¢

mopower results for the two scenarios. The 2D thermopower 10t

exceeds the 3D values by a substantial margin throughoutthe  o5_=2=="--"""

entire range from 0.001 - 0.5 holes/unit cell. Atthe heavy-do L L o
ings of 0.05 - 0.1 per unit cell, the 2D thermopower is nearly ‘ 0.005 0.010 0.050 0.100 0500 P19

double the 3D value, which is highly favorable for thermo-
electric performance, and this thermopower increase canes
a conductivity reduction (Egs. 5 and 7), relative to the 3D
case, of only one third.

The 2D power factor (Figure 3) exceeds the 3D value across
the entire range of concentration, and its maximum value is
two and a half times the corresponding 3D maximum. Itis Figure 2 also depicts the thermopower results within the
highly likely that 2D performance (i.e. ZT) would substan- DSTA. For the 2D case the DSTA is identical to the CSTA
tially exceed that of the 3D case. In the inset of Figure 2 wesince the 2D density-of-states is constant with energytter
depict a “real-world” example of this two dimensional feau 3D case, however, use of the DSTA results in a significant
- the first principles calculated valence band densitytafes  decreasén thermopower, as it preferentially weights the car-
of PbTe, the highest performance thermoelectric known. Theiers nearest in energy to the band edge, where the DOS is
plot shows a feature very similar to a broadened step functiolower andt(E) therefore larger. The upshot of this discussion
expected for a two dimensional feature. We emphasize thas that for the CSTA, the beneficial effect of two dimensional
the notation 2D and 3D is to distinguish the cases, but that irlectronic structures relative to three dimensional osssib-
both cases we are referring to the bulk, macroscopic measustantial, and that moving to the less-used DSTA amtyeases
able values for the cubic crystal. this effect.

FIG. 3. (color online) The calculated power fac®o in mW/m-
K2 for the 2D (blue solid line) and 3D (red dashed and dotteds)ine
cases. Same line conventions as in Figure 2.
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ANALY SISOF ENHANCED SEEBECK COEFFICIENT IN integrals can be done exactly. As is well known [49], the 3D
2D CASE parabolic band thermopower is given by
ks 5
The results of the previous section strongly suggest tleat th S(p,T)ap = gB(é —Nap(p,T)) (15)

two dimensional “pipe” topology is favorable for thermoele

tric performance, particularly for the Seebeck coeffigiemt ~ For our 2D cylindrical parabolic band one finds that

indispensable ingredient of good thermoelectric perfarcea ks

Here we provide analytic understanding of this result. S(p. T)zo = (2= N20(p, T)) (16)
The enhanced behavior of the 2D system modeled here )

arises from the relatively larger Fermi surface volume (or,NOte thatnzp andnzp vary due to the topology difference,

equivalently, carrier concentration) of a 2D cylinder tislato ~ and we now work out an expression for their difference. For
a 3D sphere, for given Fermi energy. The Fermi surface vol2 dimensions, the relation ofand p can be evaluated exactly

ume of the cylinder is proportional to the length of the cgitn ~ 2Nd IS Simply

= 2 avalue much larger than the radius of the cylinder or the TIp
spﬁere, so that for given Fermi energy the carrier concentra Nz0 = log(exp 3rrr*Ta2) - (A7)
tion is much larger. The Fermi energy is relevant because of 4 i the non-degenerate limit this becomes
the well-known Mott formula for the thermopower,
N2p = log(s—r—) (18)
S— %kgmog(o(a) JdEe e, (10) N STt
e One can similarly work out an expression fpgp in the non-
and for a parabolic 3D band yields degenerate limit and one finds
ke /2
S= Z—kBT/EF (11) nsp = log % (19)
€ 3(2m)2a3T 2

so the thermopower is inversely proportionalgp. In two
dimensions, at fixed carrier concentratienis much smaller t
than in three dimensions, and the thermopower is enhanced Hga

so that, restoring the appropriate powersahd ks one finds

a result. «1/2 3
m*"“a(kgT)
To gain additional insight into this phenomenon and explore N2p —Nap = —log 7\/5[5 (20)

the effect of changing parameters, we perform analyticucalc
lations within two well-known limits for which closed form For the modeled situationn = 0.2my, T = 100K,a =
results are available: the degenerate limit, whenEr /T >  6.46A) the difference is -2.097 so that in the non-degenerate
1, and the non-degenerate limit, whgnr< 0. Together these limit one findsSyp — Ssp = 1.597g/e = 137uV/K, which is
regimes account for most of the behavior of the thermopowevery close to the difference in these values at the left hdnd o
in Figure 1. We begin with the degenerate limit. In two di- Figure 2. This is a substantial increase.

mensions, for radial mass*mit is easy to show (assuminga  The last equation reveals that if the effective mass (which
band degeneracy of 24, 2 for spin and 12 for the 12 “pipes”was chosen on the basis of effective masses in the chalco-
that the thermopower takes the form genides and BiTes) is larger, the effective benefit in the non-
degenerate limit is smaller, but for large effective mastania

N2
Sp = f@ 3m 62‘ ke (12) als oneis typically closer to the degenerate limit. Consigrs
3 e mhp if the temperature is smaller (such as for room temperapte a
where p is the carrier concentration per unit cell, and siryil ~ Plications) the difference is correspondingly greateoyjited
for 3D, the sample remains in the non-degenerate limit.
2 kg 2m*a2kgT
So= 5oy (13)

T2 e ﬁz(ﬂzp)% SUMMARY AND CONCLUSIONS

so that one finds that To summarize, we have here shown that (1) low dimen-
Sb/Sp = (T[/p)% (14) sional electronic structures can occur even in cubic semi-
conductors, and that (2) such electronic structures atayhig
Sincep is typically much less than unity5 is substantially beneficial for thermoelectric performance. This represent
larger than go. Numerically for p=0.5/u.c. (yielding anzp a new paradigm for high thermoelectric performantmy-
of 5.5) this ratio is 1.845, while the exact result is 1.74%, a dimensionalelectronic structures enhancing performance in
percent difference. fully three dimensional bulthermoelectrics. Examples of ex-
We now treat the non-degenerate limit, which is specifiedsting materials in which this effect appears to be active ar
by n <« 0, so f(E — ) reduces to exé}—E and the energy the high performance thermoelectrics PbTe, PbSe and PbS.



We suggest searching for new thermoelectric materials witli22] P.J. Lin and L. Kleinman, Phys. Re\42, 478 (1966).

this feature. One such compound may be SnTe [50, 51].
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