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High three dimensional thermoelectric performance from low dimensional bands
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Reduced dimensionality has long been regarded as an important strategy for increasing thermoelectric per-
formance, for example in superlattices and other engineered structures. Here we point out and illustrate by
examples that three dimensionalbulkmaterials can be made to behave as if they were two dimensional from the
point of view of thermoelectric performance. Implicationsfor the discovery of new practical thermoelectrics are
discussed.

INTRODUCTION

Thermoelectric performance is quantified by the figure of
merit, ZT = σS2T/κ, whereσ is the electrical conductivity,
κ is the thermal conductivity,S is the thermopower (Seebeck
coefficient) andT is the absolute temperature. [1, 2] There
is no known thermodynamic or other fundamental limitation
on ZT, but finding highZT materials is very challenging and
only a few materials withZT significantly higher than unity
are known. The difficulty is that finding highZT requires
finding a material that combines transport properties that do
not normally occur together. Here we focus on the combina-
tion of high thermopower and high conductivity.

The lowT electrical conductivity of a metal or degenerate
semiconductor depends on the electronic states and their scat-
tering at the Fermi level,EF , specificallyσ ∝ N(EF)< v2 > τ,
with N the density of states,< v2 > the average Fermi veloc-
ity for the current direction, andτ an inverse scattering rate.
[3, 4] The conductivity therefore improves as one movesEF

away from the band edge, as in that case both the velocity
andN(EF) increase. The thermopower is different. At low
T, S(T) ∝ T(dσ/dE)/σ, i.e. S/T is large near the band edge
where the logarithmic derivative ofσ with energy is high.

Hicks and Dresselhaus suggested overcoming this conun-
drum via quantum well structures. [5] They observed that in
a two dimensional system the dependence ofN(E) on energy
for a parabolic band is a step function, meaning that for the in-
plane direction one expects a faster onset of the conductivity
with energy and furthermore, higherS for given carrier con-
centration. Viewed in three dimensions, the Fermi surfaces
of superlattices or two dimensional semiconductors are in the
shape of cylinders or pipes running along the direction of the
layering rather than the spheres or ellipsoids of three dimen-
sional doped semiconductors.

However, most thermoelectric applications involve macro-
scopic devices that are difficult to implement with superlat-
tices and experience problems such as parasitic heat conduc-
tion in barrier layers of superlattices. Nonetheless, one ob-
serves that NaxCoO2, representative of the highest perfor-
mance oxide thermoelectrics, and showing highZT at high
carrier concentration, [6] has a very two dimensional elec-
tronic structure. [7] This material illustrates another prob-
lem with using 2D electronic systems as thermoelectrics. The
high electrical conductivity is realized only in the layers, not
perpendicular to them, while the heat conduction is more

isotropic. Very highZT is therefore realized only in single
crystals for in-plane conduction or at least in highly textured
ceramic. Here we propose an alternate resolution of the co-
nundrum of highσ and highS using low dimensional elec-
tronic structures.

We observe that it is possible to have an electronic struc-
ture that is low dimensional in a material that is not low di-
mensional provided that symmetry is obeyed. This is known
in metallic materials, the best example being body centered
cubic Cr metal, where flat (i.e. 1D) parts of the Fermi surface
yield a nesting induced spin density wave. [8] Another exam-
ple is the superconductor Sr2RuO4, which despite its tetrag-
onal symmetry has flat one dimensional sheets of Fermi sur-
face that generate nesting induced peaks in its susceptibility.
[9, 10] Generally, these cases are large Fermi surface metals,
which are not of interest as thermoelectrics. However, there is
no symmetry or other fundamental reason that this must be so
and we begin by pointing out counterexamples.

The face centered cubic rocksalt structure chalcogenides,
PbTe, PbSe, PbS and SnTe are the basis of excellent ther-
moelectric materials. [1, 2] While the thermoelectric prop-
erties of these materials have been discussed in terms of var-
ious physical models, band structure calculations combined
with standard Boltzmann transport theory can reproduce and
predict their thermopowers, as illustrated by predictionsfor
PbSe. [12, 13] As is well known, the valence band (p-type)
electronic structure is dominated byL-point hole pockets for
low carrier concentrations andT, while at higher carrier con-
centrations andT transport and other data imply additional
electronic features, often discussed as a second heavy band.
[14–16] Band structure calculations show no second heavy
band, but instead connections developing between theL-point
pockets near, but not at, the valence band maximum.

We illustrate this in Fig. 1, which shows energy isosur-
faces for the near valence band edge of PbTe, PbSe, PbS and
SnTe. These are based on calculations, including spin-orbit,
done with the augmented planewave plus local orbital method,
[17] as implemented in the WIEN2k code. [18] We employed
the modified Becke-Johnson potential of Tran and Blaha (TB-
mBJ), [19] which generally gives improved band gaps for sim-
ple semiconductors and insulators. [19–21] Besides these de-
tails the calculations are similar to those presented previously.
[12, 22–30] The densities of states (not shown) show low val-
ues characteristic of a light band up to the energy where theL-
point pockets connect, where there is a sharp onset of a steeply
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FIG. 1. (color online) Calculated valence band constant energy sur-
faces of PbTe, PbSe, PbS and SnTe, at 0.25 eV, 0.49 eV, 0.61 eV,
and 0.41 eV below the valence band maximum, respectively. The
corresponding carrier concentrations in holes per unit cell are 0.005,
0.030, 0.054 and 0.016, respectively.

rising density of states, which is clearly beneficial for obtain-
ing enhancedS(T) at doping levels near the onset and was dis-
cussed in relation to the thermoelectric performance of PbTe.
[27] Here we associate this with the pipes.

Qualitatively, the Fermi surface of a doped superlattice or
other 2D semiconductor is cylindrical running along the stack-
ing direction. The conductivity is low along the cylinder and
high in the plane. Considering for example the conductivity
alongx for a cubic network of pipes running alongkx, ky and
kz as is approximately the case in these materials, the pipes
along ky and kz will contribute as in a superlattice material
in plane, while the pipes alongkx will behave like the stack-
ing direction and will not contribute to the conductivity. Thus
the energy dependence and other behavior are the same as the
superlattice, including the enhanced 2D behavior of the ther-
mopower, except that now the properties are isotropic due to
the cubic symmetry and superposition of pipes on different
directions.

Clearly, the electronic structures of the chalcogenides
shown in Fig. 1 are approximations of this idealized behav-
ior. Nonetheless, they suggest elucidation of the behaviorof
a cubic or other three dimensional semiconductor with a low
dimensional electronic structure in the sense discussed above.
This may be a useful paradigm in the search for new high per-
formance thermoelectric materials.

CALCULATIONS

We here pursue calculations to describe the behavior of the
transport in the aforementioned “pipes” scenario. We consider
a one band material with a pipe-like electronic structure, be-
ginning by assuming the electronic scattering timeτ(E) in-
dependent of energy, i.e. the “constant scattering time ap-
proximation” (CSTA). This has been used with quantitative
accuracy to describe the thermopower of a substantial num-
ber of thermoelectric materials [27, 31–38] so its usage is
on solid practical grounds. We also present results for the
thermopower and power factor in a case whereτ(E) is in-
versely proportional to the electronic density-of-states, as con-
sidered in Refs. 39–41; we will see that this model (which we
term “DSTA”) renders the two dimensional electronic struc-
ture scenario evenmorefavorable relative to the three dimen-
sional electronic structure scenario. Note also that here we
consider two dimensionalelectronicstructures inbulk mate-
rials as opposed to the two-dimensionalphysicalstructures in
non-bulkmaterials [42] such as nanowires, considered in these
last references.

Then we have the canonical expressions for the electrical
conductivityσ(T) and Seebeck coefficientS(T):

σ(E) = N(E)v2(E)τ(E) (1)

σ(T) =−
∫ ∞

−∞
dEσ(E)d f(E−µ)/dE (2)

S(T) =− kB

eσ(T)

∫ ∞

−∞
dEσ(E)

E−µ
T

d f(E−µ)/dE (3)

with f the Fermi function,e the electronic charge,kB Boltz-
mann’s constant,τ(E) the scattering time,v(E) the Fermi ve-
locity, µ the chemical potential andN(E) the density of states.
The tensor indices are suppressed for clarity, and the integra-
tions in actual calculations involve a Brillouin-zone sum.

We now compare the thermopower and power factorS2σ
of two idealized Fermi surface topologies: a two dimensional
cylindrical Fermi surface connecting the L-points of the fcc
Brillouin zone, as suggested by Figure 1, and a three dimen-
sional spherical Fermi surface. Note that in actual materials
Fermi surfaces which contact Brillouin zone faces must do so
at perpendicular angles, so the pipes reconnect at the L-point
pockets, as in, for example, band structure calculations for
PbTe. Both bands are assumed parabolic, and to ensure a fair
comparison we choose the radial masses of the cylinder and
sphere equal. Additionally, as was noted by Ref. 43, in the
chalcogenides the cylindrical band is twelve-fold degenerate
and we have assumed this here. For comparison purposes we
take the spherical Fermi surface to be twelve-fold degenerate.

Then within the CSTA the above integrals are easily eval-
uated for both cases, yielding the following expressions (here
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η = µ/T, the reduced chemical potential.)

S3D(T) =
5
3

F3/2(η)
F1/2(η)

−η (4)

σ3D(T) =
pe2τ
m∗ (5)

S2D(T) = 2
F1(η)
F0(η)

−η (6)

σ2D(T) =
2pe2τ
3m∗ (7)

Herep is the carrier density given as

p=

∫
dEN(E) f (E−µ) (8)

whereN(E) is the density of states, m∗ the carrier effective
mass, and F is the Fermi-Dirac integral, defined as

Fi(η) =
∫ ∞

0
xi/(exp(x−η)+1) (9)

The 2/3 factor for the two-dimensional conductivity arisesbe-
cause, each of the cylinders contributing to N(E), and hence
p, conducts in only two of three directions. Finally, we incor-
porate the relation of the reduced chemical potentialη to the
carrier concentrationp, which is performed by inverting Eq.
8, as in Ref. 48.

We now move to the calculated results. We have assumed
(although the results do not sensitively depend on these as-
sumptions) an fcc cell of lattice constant 6.46Å, band masses
of 0.2 m0, where m0 is the free electron mass, and fixed the
temperature at 1000 K, the approximate maximum operating
temperature of the chalcogenides. We assume a doping in-
dependent scattering timeτ of 10−15 sec, which yields high
temperature conductivities of 100 - 1000(Ω-cm)−1, in line
with experimental results. Figure 2 depicts the calculatedther-
mopower results for the two scenarios. The 2D thermopower
exceeds the 3D values by a substantial margin throughout the
entire range from 0.001 - 0.5 holes/unit cell. At the heavy dop-
ings of 0.05 - 0.1 per unit cell, the 2D thermopower is nearly
double the 3D value, which is highly favorable for thermo-
electric performance, and this thermopower increase comesat
a conductivity reduction (Eqs. 5 and 7), relative to the 3D
case, of only one third.

The 2D power factor (Figure 3) exceeds the 3D value across
the entire range of concentration, and its maximum value is
two and a half times the corresponding 3D maximum. It is
highly likely that 2D performance (i.e. ZT) would substan-
tially exceed that of the 3D case. In the inset of Figure 2 we
depict a “real-world” example of this two dimensional feature
- the first principles calculated valence band density-of-states
of PbTe, the highest performance thermoelectric known. The
plot shows a feature very similar to a broadened step function
expected for a two dimensional feature. We emphasize that
the notation 2D and 3D is to distinguish the cases, but that in
both cases we are referring to the bulk, macroscopic measur-
able values for the cubic crystal.
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FIG. 2. (color online) (Main panel) The calculated thermopower for
the 2D (blue solid line) and 3D (red lines) cases. For the 2D case
the CSTA and DSTA give identical results, while for the 3D case
the CSTA results are the heavy dashed line and the DSTA results
the dotted line. Carrier concentrations given per unit cell. Inset: the
first principles calculated density-of-states of the two dimensional
electronic feature in PbTe, as depicted in Figure 1.
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FIG. 3. (color online) The calculated power factorS2σ in mW/m-
K2 for the 2D (blue solid line) and 3D (red dashed and dotted lines)
cases. Same line conventions as in Figure 2.

Figure 2 also depicts the thermopower results within the
DSTA. For the 2D case the DSTA is identical to the CSTA
since the 2D density-of-states is constant with energy. Forthe
3D case, however, use of the DSTA results in a significant
decreasein thermopower, as it preferentially weights the car-
riers nearest in energy to the band edge, where the DOS is
lower andτ(E) therefore larger. The upshot of this discussion
is that for the CSTA, the beneficial effect of two dimensional
electronic structures relative to three dimensional ones is sub-
stantial, and that moving to the less-used DSTA onlyincreases
this effect.
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ANALYSIS OF ENHANCED SEEBECK COEFFICIENT IN
2D CASE

The results of the previous section strongly suggest that the
two dimensional “pipe” topology is favorable for thermoelec-
tric performance, particularly for the Seebeck coefficient, an
indispensable ingredient of good thermoelectric performance.
Here we provide analytic understanding of this result.

The enhanced behavior of the 2D system modeled here
arises from the relatively larger Fermi surface volume (or,
equivalently, carrier concentration) of a 2D cylinder relative to
a 3D sphere, for given Fermi energy. The Fermi surface vol-
ume of the cylinder is proportional to the length of the cylinder
= 2π

a , a value much larger than the radius of the cylinder or the
sphere, so that for given Fermi energy the carrier concentra-
tion is much larger. The Fermi energy is relevant because of
the well-known Mott formula for the thermopower,

S=
π2kB

3e
kBTdlog(σ(E))/dE|E=EF

(10)

and for a parabolic 3D band yields

S=
π2kB

2e
kBT/EF (11)

so the thermopower is inversely proportional toEF . In two
dimensions, at fixed carrier concentrationEF is much smaller
than in three dimensions, and the thermopower is enhanced as
a result.

To gain additional insight into this phenomenon and explore
the effect of changing parameters, we perform analytic calcu-
lations within two well-known limits for which closed form
results are available: the degenerate limit, whenη ≡ EF/T ≫
1, and the non-degenerate limit, whenη < 0. Together these
regimes account for most of the behavior of the thermopower
in Figure 1. We begin with the degenerate limit. In two di-
mensions, for radial mass m∗, it is easy to show (assuming a
band degeneracy of 24, 2 for spin and 12 for the 12 “pipes”)
that the thermopower takes the form

S2D =
π2

3
kB

e
3m∗a2kB

πh̄2p
(12)

where p is the carrier concentration per unit cell, and similarly
for 3D,

S3D =
π2

2
kB

e
2m∗a2kBT

h̄2(π2p)
2
3

(13)

so that one finds that

S2D/S3D = (π/p)
1
3 (14)

Sincep is typically much less than unity, S2D is substantially
larger than S3D. Numerically for p=0.5/u.c. (yielding anη2D

of 5.5) this ratio is 1.845, while the exact result is 1.747, a6
percent difference.

We now treat the non-degenerate limit, which is specified
by η ≪ 0, so f (E − µ) reduces to expµ−E

T and the energy

integrals can be done exactly. As is well known [49], the 3D
parabolic band thermopower is given by

S(p,T)3D =
kB

e
(
5
2
−η3D(p,T)) (15)

For our 2D cylindrical parabolic band one finds that

S(p,T)2D =
kB

e
(2−η2D(p,T)) (16)

Note thatη2D andη3D vary due to the topology difference,
and we now work out an expression for their difference. For
2 dimensions, the relation ofη and p can be evaluated exactly
and is simply

η2D = log(exp(
πp

3m∗Ta2 )−1) (17)

and in the non-degenerate limit this becomes

η2D = log(
πp

3m∗Ta2 ) (18)

One can similarly work out an expression forη3D in the non-
degenerate limit and one finds

η3D = log

(

4π3/2p

3(2m∗)
3
2 a3T

3
2

)

(19)

so that, restoring the appropriate powers of ¯h and kB one finds
that

η2D −η3D =− log

(

m∗1/2
a(kBT)

1
2

√
2πh̄

)

(20)

For the modeled situation (m∗ = 0.2m0,T = 1000K,a =
6.46Å) the difference is -2.097 so that in the non-degenerate
limit one findsS2D −S3D = 1.597kB/e= 137µV/K, which is
very close to the difference in these values at the left hand of
Figure 2. This is a substantial increase.

The last equation reveals that if the effective mass (which
was chosen on the basis of effective masses in the chalco-
genides and Bi2Te3) is larger, the effective benefit in the non-
degenerate limit is smaller, but for large effective mass materi-
als one is typically closer to the degenerate limit. Conversely,
if the temperature is smaller (such as for room temperature ap-
plications) the difference is correspondingly greater, provided
the sample remains in the non-degenerate limit.

SUMMARY AND CONCLUSIONS

To summarize, we have here shown that (1) low dimen-
sional electronic structures can occur even in cubic semi-
conductors, and that (2) such electronic structures are highly
beneficial for thermoelectric performance. This represents
a new paradigm for high thermoelectric performance:low-
dimensionalelectronic structures enhancing performance in
fully three dimensional bulkthermoelectrics. Examples of ex-
isting materials in which this effect appears to be active are
the high performance thermoelectrics PbTe, PbSe and PbS.
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We suggest searching for new thermoelectric materials with
this feature. One such compound may be SnTe [50, 51].
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