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We present a unified study of the effect of periodic, quasiperiodic and disordered potentials on
topological phases that are characterized by Majorana end modes in 1D p-wave superconducting
systems. We define a topological invariant derived from the equations of motion for Majorana
modes and, as our first application, employ it to characterize the phase diagram for simple periodic
structures. Our general result is a relation between the topological invariant and the normal state
localization length. This link allows us to leverage the considerable literature on localization physics
and obtain the topological phase diagrams and their salient features for quasiperiodic and disordered
systems for the entire region of parameter space.
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Introduction.– Recent claims of the detection of Ma-
jorana fermions in semiconducting/superconducting het-
erostructures [1–4] have stirred new excitement leading
to several avenues of inquiry [5–25]. A major concern in
these effectively spinless p-wave superconducting wires
is the role of spatially varying potentials, be they ex-
ternally applied or due to disorder. The latter has in
fact been a rich, active topic of study for over a decade
in terms of delocalization-localization physics in one-
dimensional (1D) systems in the D and BDI symme-
try classes [26, 27]. The pioneering work of Ref. [27]
specifically explored the conditions for the existence of
Majorana end modes in these disordered systems, argu-
ing that a finite amount of superconductivity is required
to drive the system into such a topological phase. More
recently, several works have further investigated this as-
pect [28–31]. In this Letter, we perform a cohesive study
of the topological phase diagram for a range of poten-
tial landscapes on a lattice, extending and unifying work
on periodic [32–34], quasiperiodic [14, 35] and disordered
potentials [7, 17, 20, 21, 27].

Our central observation connects normal state localiza-
tion properties to the decay of the Majorana wave func-
tion into the bulk of the system, the topological phase
being defined as having these normalizable Majorana end
modes. The effectively spinless model that we study here
generalizes the experimental proposals of Refs. [5, 6] in
the limit in which the Zeeman energy greatly exceeds
the superconducting gap and the spin-orbit energy scale,
and is directly applicable to the setting of the pioneer-
ing experiment of Ref. [1]. Indeed, our model is in close
quantitative agreement with the model of Ref. [36] in this
limit. We apply this general result to obtain the critical
superconducting strength required to engender an end
Majorana mode, thus enabling us to obtain the topologi-
cal phase diagram for a variety of situations (see Fig. 1).

FIG. 1: Topological phase diagrams (T - topological, N - non-
topological) as a function of superconducting gap, ∆, and
potential strength, W , for (a) a periodic potential having
the pattern (W,W,−W,−W ), (b) a quasiperiodic potential
W cos(2πωn) for any irrational ω, (c) box-distributed (uni-
form) disorder, and (d) Lorentzian distributed disorder.

For disordered systems, this connection proves powerful
in that it allows us to leverage the vast body of literature
on normal state localization physics to identify topologi-
cal properties of the disordered superconductor.

Unlike in the uniform case, we find that even in the
simplest case of periodic potentials, the T-phase requires
a finite amount of superconductivity, which thus acts as a
new knob to access the phase. A crucial tool in this analy-
sis is the definition of a topological invariant based on the
decay length of the end mode [32]. In the quasiperiodic
case, the topological boundaries reflect the morphology
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of the fractal patterns exhibited by the normal state en-
ergy spectrum (see Fig. 2). In the presence of disorder,
the topological regions arise as a result of the competition
between the localizing effects of disorder and the super-
conducting pairing which tends to spatially separate the
Majorana fermions composing a Dirac state. Our anal-
yses provide a mapping for the phase boundary between
strong and weak disorder limits and reproduce the ex-
act form for the intermediate point corresponding to the
random field transverse Ising model. We present two rep-
resentative cases of our analysis for the disordered phase
diagram in Fig. 1(c-d).
Model and Topological features.– Turning to our start-

ing point, as has proved effective in previous studies, we
model the superconducting wire as a 1D tight-binding
system of spinless electrons exhibiting p-wave supercon-
ductivity. Accordingly, our Hamiltonian is a variant of
the one pioneered by Kitaev [37] that incorporates spatial
inhomogeneity:

H =

N
∑

n=1

[

− t
(

f †
nfn+1 + f †

n+1fn

)

+∆
(

fnfn+1

+ f †
n+1f

†
n

)

+ µn

(

f †
nfn − 1/2

)

]

, (1)

where t is the nearest-neighbor hopping amplitude and
∆ is the superconducting gap parameter (both assumed
to be real so that the system is time-reversal symmet-
ric), and we will eventually take the number of sites
N → ∞. (Note that the Hamiltonian commutes with

the total fermion number,
∑N

n=1
f †
nfn, if ∆ = 0. Hence,

Majorana modes, which do not have a definite fermion
number, can only appear if ∆ 6= 0). The various cases
of periodic, quasiperiodic, and disordered potentials are
encoded in the local on-site chemical potential µn and
are characterized by a typical potential strength W . The
Dirac fermion fn can be expressed in terms of Majorana
fermions, fn = (an + ibn)/2, which are Hermitian op-
erators satisfying the anticommutation rules {an, am} =
{bn, bm} = 2δn,m and {an, bm} = 0.
We now construct a topological invariant that links

topology to the eigenvalue structure of zero-energy
end modes described by the Hamiltonian in Eq. (1).
Specifically, the end Majorana modes that decay into
the bulk can be represented by the operators Qa =
∑

n αnan, Qb =
∑

n βnbn, where the wave function αn

obey the zero-energy equations of motion derived from
Eq. (1). As detailed in Ref. [32], these equations can be
represented in the transfer matrix form
(

αn+1

αn

)

= An

(

αn

αn−1

)

, where An =

( µn

∆+t
∆−t
∆+t

1 0

)

.

(2)
Since the An may be taken as functions of µn/t and ∆/t,
we set t = 1. A similar expression holds for the βn.
The existence of end Majorana modes requires the αn

(or βn) to be normalizable. We denote the number of

TABLE I: Criteria for topological phase for a selection of pe-
riodic potentials.

period pattern of µn topological for

1 . . . ,W,W,W, . . . |W | < 2

2 . . . ,W,−W, . . . ∆ > |W |/2

4 . . . ,W,W,W,−W, . . . ∆2 > W 2/2− 1

4 . . . ,W,W,−W,−W, . . . ∆ > W 2/4

eigenvalues of the transfer matrix A(W,∆) ≡ ∏N
n=1

An

with magnitude less than 1 by nf . For nf = 0, 2, αn and
βn are normalizable and therefore the system is topo-
logical (with a Qa mode at one end and a Qb mode at
the other end), whereas for nf = 1, αn and βn are not
normalizable and the system is non-topological [32]. We
thus define a topological invariant

ν = − (−1)nf , (3)

for which ν = −1 for the T-phase and ν = 1 for
the non-topological phase (N-phase). This quantity
can also be expressed as ν = −sgn (f(1)f(−1)), where
f(z) = det (I −Az) is the characteristic polynomial of
A [32]. Since the topology of the system depends only
on the magnitude of ∆, we take ∆ to be positive; hence
| det A| < 1. Then the two eigenvalues of A obey
|λ1λ2| < 1. Therefore, for |λ1| < |λ2|, we have |λ1| < 1
and nf is completely determined by the larger eigenvalue
λ2. Thus, we have that ν = sgn (ln |λ2|) for ∆ > 0.
Short Period Potentials.– As a simple application of

our topological invariant, we consider periodic patterns in
the sign of the chemical potential (detailed in Ref. [32]).
Table I presents the conditions for T-phases for some
select patterns. The comparison of the phase diagrams
for the uniform case and simple periodic potentials high-
lights unusual aspects of the former’s phase diagram. In
particular, the system is topological for |W/t| < 2 for any
∆ 6= 0. This stems from the fact that the corresponding
normal state system (with ∆ = 0) is gapless when W lies
in the range [−2t, 2t] [37]. In contrast, non-uniform po-
tentials tend to open a bulk gap at E = 0 with a size that
grows with increasingW . This leads to a phase boundary
which generically has d∆

dW > 0 [38]. We now quantify this
observation and extend it to other potential landscapes.
Features of the Topological Phase Diagram.– As ob-

served in Ref. [27], the product of transfer matrices which
appears in A is strongly reminiscent of that used to de-
termine localization properties of the normal state An-
derson disorder problem. We build on this observation by
determining the phase boundary from the normal state
properties of the system. In general, this leads to a crit-
ical amount of superconductivity required to drive the
system into a T-phase.
To this end, for 0 < ∆ < 1, we perform a sim-
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ilarity transformation An =
√
δSÃnS

−1 with S =
diag(δ1/4, 1/δ1/4) and δ = 1−∆

1+∆
. The matrices Ãn are

of the form shown in Eq. (2) with ∆ → 0 and µn →
µn/

√
1−∆2. This immediately gives

A(W,∆) =

(

√

1−∆

1 +∆

)N

SA
(

W/
√

1−∆2, 0
)

S−1.

(4)
Taking the logarithm of the eigenvalues of Eq. (4), the
condition that |λ2| = 1 is given by

γ(W,∆) = γ

(

W√
1−∆2

, 0

)

− 1

2
ln

(

1 + ∆

1−∆

)

, (5)

reminiscent of a result in [30], where we have defined the
Lyapunov exponent γ(W,∆) ≡ limN→∞

1

N ln |λ2(W,∆)|;
the Lyapunov exponent is the inverse of the localization
length, γ(W,∆) = 1/ℓ(W,∆). In the limit γ(W,∆) →
0, Eq. (5) describes the phase boundary separating the
topologically trivial and non-trivial regions of the phase
diagram. This relation quantifies the observation in [27,
36] that in general a critical amount of superconductivity
must be applied before the system is driven into a T-
phase. For the case in which the system is metallic (i.e.,
γ(W, 0) = 0), any non-zero ∆ will give rise to a T-phase.
The form of the phase diagram for ∆ > 1 may be

obtained by noting that the transformation

µn → µn/∆, ∆ → 1/∆, and P → P̃ (6)

where P → P̃ : {µn} → {(−1)nµn},

leaves the eigenvalues of A unchanged for N even. Thus,
if a point (W0,∆0 < 1) lies on the phase boundary of
P , then (W0/∆0, 1/∆0) lies on the phase boundary of P̃ .
This duality strongly constrains the form of the phase
boundary in the cases where the distribution is invariant
under the transformation in Eq. (6).
Finally, at the point ∆ = 1, the system maps to the

well-studied quantum Ising chain subject to a random
transverse field [29, 39]. The matrix A(W, 1) has the

eigenvalues 1

2N

∏N
n=1

µn and 0. Eq. (3) reveals that the
phase boundary passes through the point for which

〈ln |µn|〉 = ln 2, (7)

where 〈ln |µn|〉 ≡ limN→∞ 1

N
∑N

n=1
ln |µn|. These rela-

tions allow us to obtain the superconducting topological
phase diagram for quasiperiodic and disordered poten-
tials purely based on the normal state localization prop-
erties.
Ultra-long Period and Quasiperiodic Potentials.– Here

we consider two cases of potentials to study periodicity
that is incommensurate with the underlying lattice. In
the first instance, where µn = W cos (2πωn) and ω is ir-
rational, the normal state features a well-studied metal-
insulator transition at the critical value of W = 2 [40].

The normal state Lyapunov exponent takes the form
γQP (W, 0) = ln (W/2) for W > 2 and 0 for 0 ≤ W ≤ 2
for ω irrational [41, 42]. Eq. (5) then predicts a T-phase
for

∆ >
1

2
W − 1. (8)

This result holds for all values of ∆ > 0 given that the
transformation ω → ω + 1/2 yields Eq. (6) and that the
duality transformation, ∆ → 1/∆ andW → W/∆, leaves
Eq. (8) invariant. Finally, Eq. (7) also shows that the
point (W,∆) = (4, 1) lies on the phase boundary.
A second example of particular interest is the Harper

potential µn = V + 2 cos (2πωn), corresponding to the
problem of an electron hopping on a 2D square lattice
with each plaquette enclosing a magnetic flux [43]. The
associated normal state energy spectrum, the celebrated
Hofstadter’s butterfly, has a rich fractal structure stem-
ming from the fact that for ω = p/q (with p and q rela-
tively prime), the spectrum possesses q bands separated
by q − 1 non-zero gaps (Fig. 2(a)). From Eq. (3), we
directly obtain the topological phase diagram for non-
zero ∆. As shown in Fig. 2(b), for 0 < ∆ ≪ 1, there
are q topological regions inherited from the normal state
which fuse as ∆ is increased. In the ω − V parameter
space, as expected from our general analysis, the normal
state properties (Fig. 2(c)) directly inform the topologi-
cal phase diagram (Fig. 2(d)).

Disordered Potentials.– We begin with our most gen-
eral results for the disordered topological phase diagram
which pertain to the limits of weak and strong disor-
der. Consider weak, uncorrelated disorder satisfying
〈µnµn′〉 = Uδn,n′ , 〈µn〉 = 0. Using the known Lya-
punov exponent obtained from perturbation theory for
the normal state system [44, 45] and Eq. (5), we obtain
the condition for the T-phase

∆ >

(

Γ(3/4)

Γ(1/4)

)2

U ≈ 0.114 U. (9)

This result may be compared to that of a continuum
model based on the Dirac equation, which gives a topo-
logically non-trivial phase for ∆ > 1

8
U = 0.125U

(see [36]). For disorder distributions that are symmet-
ric around 0, the self-duality condition P = P̃ in Eq. (6)
is satisfied. In this case, we can employ this duality trans-
formation, ∆ → 1/∆ and U → U/∆2, to show that
Eq. (9) also describes the phase boundary in the limit
of strong disorder.
As the most generic representative for disorder, we now

turn to the case of ‘box’ disorder for which the probability
of µn falling at any point in the range−W/2 ≤ µn ≤ W/2
is equally likely. The low-energy behavior as shown in the
numerical simulation in Fig. 1(c) is in good agreement



4

FIG. 2: For the periodic potential µn = V + 2 cos (2πωn)
with ω = 1/10, the relationship between (a) the Lyapunov
exponent γH(V, 0) of the normal state and (b) the topolog-
ical phase boundary is manifest (T - topological, N - non-
topological). (c) A colorscale plot of γH(V, 0) for ω = n/200,
0 < n ≤ 200. Darker regions correspond to smaller values
of γH . The characteristic striations show the spectrum’s sen-
sitivity to the period of the potential; i.e., small changes in
omega can lead to large changes in the period (which is given
by q, where ω = p/q, with p and q relatively prime). The
resulting figure is reminiscent of the fractal known as Hof-
stadter’s butterfly. (d) The topological phase diagram for
∆ = 1/5 mimics the low-lying values of γH in (c).

with Eq. (9) (for box disorder, U = W 2/12). Eq. (7) re-
veals that the phase boundary passes through the point
(W,∆) = (Wc, 1), where Wc = 4e ≈ 10.873 (box disor-
der) with e being the base of the natural logarithm.
A noteworthy find is the observed discontinuity suf-

fered by the phase boundary as it passes through the
random field quantum Ising point ∆ = 1 (Fig. 1(c,d)).

To understand its origin, we note that γ
(

W√
1−∆2

, 0
)

, the

effective Lyapunov exponent that we seek in Eq. (5) cor-
responds to that of very strong disorder for ∆ → 1. In
this limit, we can use the known form of the normal state
Lyapunov exponent for W ≫ 1 [45] in Eq. (5), invoke
self-duality and obtain the phase boundary to linear or-
der around (W,∆) = (4e, 1),

∆ ≈
{

e
2e2+2

W − e2−1

e2+1
for ∆ ≤ 1,

e
2e2−2

W − e2+1

e2−1
for ∆ ≥ 1.

(10)

As seen in Fig. 1(c), this result is in reasonable agreement
with numerical simulations. To go further, treating the
quantity δ = 1−∆

1+∆
perturbatively reveals corrections to

Eq. (7) yielding 〈ln |µn|〉 = ln 2−
(

1 + 4〈1/µ〉2
)

δ
2
+O(δ2).

This shows that the phase boundary is fragile towards
singularities when µn is allowed to come arbitrarily close
to zero. Indeed, our simulations have shown that the dis-
continuity is absent for disorder distributions that avoid
zero energy. From our extensive simulations and gen-
eral insights in the box disorder case, we conclude that a
large class of disorder distributions that cover zero energy
give rise to a discontinuity in the slope of the topological
phase boundary at ∆ = 1.
Finally, we turn to the specific case of disorder drawn

from a Lorentzian distribution

fL(x;W ) =
1

π

W

x2 +W 2
. (11)

The phase diagram is exactly soluble in this case
since the normal state density of states is known ex-
actly [46]. The zero-energy Lyapunov exponent, first
obtained by Thouless [47], takes the form γL(W, 0) =

ln
(

W/2 +
√

1 +W 2/4
)

. Once again invoking Eq. (5)

and self-duality of the phase diagram yields a phase
boundary

W =

{

2∆ for ∆ ≤ 1,

2 for ∆ ≥ 1.
(12)

This result, as shown in Fig. 1(c), is in excellent agree-
ment with numerical simulations. It should be pointed
out that the features of this phase diagram are extremely
unusual. For instance, Eq. (9) fails to hold because the
second moment 〈µ2

n〉 is ill-defined for fL. This exam-
ple is noteworthy since, for W > 2 the system is always
in an N-phase; no amount of ∆ can drive the system
into a T-phase. Studying these examples has shown us,
among other features, that typically the larger the dis-
order, the more superconductivity is required for Majo-
rana end modes to exist, and that the topological phase
diagram is highly sensitive to the nature of the disorder
distribution.
In conclusion, forging a connection between the normal

state localization properties and the behavior of Majo-
rana end modes has provided us a powerful means for
constructing the complete topological phase diagram for
superconducting wires. These results represent just one
application of the connection we have elucidated between
the Majorana wave function and normal state localiza-
tion properties. Future work would include more exten-
sive utilization of known Anderson localization results
to different types of disorder. For instance, we can con-
sider modulations of the hopping amplitude; our analysis
is also readily generalized to cases where the Hamilto-
nian contains couplings beyond nearest neighbors [33],
which would require transfer matrices which are larger
than 2× 2. Finally, other generalizations can be consid-
ered, such as time-reversal symmetry breaking and spin-
ful electrons [26, 27], multichannel wires [8–13], interac-
tions [16–19], and finite temperature.



5

We are grateful to I. Gruzberg, V. Shivamoggi, and M.
Thakurathi for their comments. For support, we thank
the NSF-CAREER under grant DMR 0644022-CAR
(W.D. and S.V.), DST, India under grant SR/S2/JCB-
44/2010 (D.S.), and a Simons Fellowship (S.V.).

[1] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A.
M. Bakkers, and L. P. Kouwenhoven, Science 336, 1003
(2012).

[2] M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P.
Caroff, and H. Q. Xu, Nano Lett. 12, 6414 (2012).

[3] L. P. Rokhinson, X. Liu, and J. K. Furdyna, Nature Phys.
8, 795 (2012).

[4] A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and
H. Shtrikman, Nature Phys. 8, 887 (2012).

[5] R. M. Lutchyn, J. D. Sau, S. Das Sarma, Phys. Rev. Lett.
105, 077001 (2010).

[6] Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett.
105, 177002 (2010).

[7] P. W. Brouwer, M. Duckheim, A. Romito, and F. von
Oppen, Phys. Rev. Lett. 107, 196804 (2011).

[8] A. C. Potter and P. A. Lee, Phys. Rev. Lett. 105, 227003
(2010).

[9] I. C. Fulga, F. Hassler, A. R. Akhmerov, and C. W. J.
Beenakker, Phys. Rev. B 83, 155429 (2011).

[10] T. D. Stanescu, R. M. Lutchyn, and S. Das Sarma, Phys.
Rev. B 84, 144522 (2011).

[11] S. Tewari and J. D. Sau, Phys. Rev. Lett. 109, 150408
(2012).

[12] M. Gibertini, F. Taddei, M. Polini, and R. Fazio, Phys.
Rev. B 85, 144525 (2012).

[13] J. S. Lim, L. Serra, R. López, and R. Aguado, Phys. Rev.
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