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We study a multiorbital model for the alkaline iron selenides K1−xFe2−ySe2 using a slave-spin
method. With or without ordered vacancies, we identify a metal-to-Mott-insulator transition at
the commensurate filling of six 3d electrons per iron ion. For Hund’s couplings beyond a threshold
value, this occurs via an intermediate orbital-selective Mott phase, in which the 3d xy orbital is
Mott localized while the other 3d orbitals remain itinerant. This phase is still stabilized over a
range of carrier dopings. Our results lead to an overall phase diagram for the alkaline iron selenides,
which provides a unified framework to understand the interplay between the strength of vacancy
order and carrier doping. In this phase diagram, the orbital-selective Mott phase provides a natural
link between the superconducting K1−xFe2−ySe2 and its Mott-insulating parent compound.

PACS numbers: 71.30.+h, 74.70.Xa, 71.10.Hf, 71.27.+a

Introduction. It is generally believed that the super-
conductivity in iron-based materials [1, 2] is unconven-
tional and originates from electron-electron interactions.
These materials, therefore, provide a new setting to ad-
dress how strong electron correlations must be for the
high-temperature superconductivity. For the parent iron
pnictides, the metallic antiferromagnetic ground state [3]
may arise either from the Fermi surface nesting of a weak
coupling theory [4, 5], or from the strong correlation
effects associated with the proximity to a Mott transi-
tion and the concomitant quasi-local moments [6–12].
Here, indications for considerable electron correlations
have come from a number of factors, including the large
spectral weight in the fluctuating magnetic spectrum [13].
For the iron chalcogenides, the correlation effects are even
more pronounced. In the 11 iron chalcogenides [14], both
the large ordered magnetic moment and the ordering
wave vector are difficult to understand within the nesting
picture. In the iron oxychalcogenide La2O3Fe2Se2, the
Mott insulating behavior has been experimentally iden-
tified and theoretically explained in terms of the band
narrowing effect associated with the expansion of the iron
lattice unit cell [15]. These results provide the support
for the incipient Mott picture [16, 17].

The recently discovered alkaline iron selenide super-
conductors [18] A1−xFe2−ySe2 (A=K, Rb, Cs, or Tl)
shed new light on this issue. In these materials the
superconducting Tc is comparable to that of the pnic-
tides [18–21], and the superconductivity is near an insu-
lating phase [22, 23]. The insulator is antiferromagnetic
with a large ordered moment [24, 25]; importantly, this
phase is intimately connected to the ordered iron vacan-
cies [22, 24, 26]. The lack of hole pockets in the Fermi
surface of the superconducting compounds revealed by
the ARPES measurements [27–29] makes the high Tc and
the large-moment magnetic order hardly explainable by
the nesting mechanism. Instead, they are more naturally
understood within the incipient Mott picture. For in-
stance, the insulating state is naturally interpreted as a

Mott insulator (MI), not only because it would have been
metallic – with or without the ordered vacancies – in the
absence of interactions but also because the interactions
are strong as inferred from the large ordered moment. It
has been proposed that the vacancy order enhance the
interaction effects by reducing the bandwidth [30–32].
At the same time, various experiments suggest that the
superconducting state is either free of iron vacancies or
vacancy disordered, and is intrinsically phase separated
from the vacancy ordered insulating state [33–35]. In
order to understand the implications of the behavior ob-
served in the alkaline iron selenides for the overall physics
of the iron-based superconductors, it is important to un-
derstand how the vacancy ordered insulating state con-
nects to superconducting phase. Elucidating this linkage
is an important goal of the present study.
In multiorbital systems, the physics of the metal-to-

insulator transitions (MITs) [36] may be orbital sensi-
tive. An extreme example is the orbital-selective Mott
transition (OSMT), for which the Mott transition takes
place at different correlation strengths for different or-
bitals [37, 38]. It is believed that the OSMT occurs
in (Ca,Sr)2RuO4.[37–39] For iron-based superconductors,
strong orbital differences have been suggested in several
systems [40–43]. For the iron pnictides, an OSMP is com-
petitive but is not stabilized as a ground state [44].

In this letter, we investigate the MIT in the
K1−xFe2−ySe2 system using a slave-spin method [44, 45].
We show that when the Hund’s coupling is sufficiently
strong, the Mott localization of the system is always via
an OSMP, in which the 3d xy orbital is Mott localized,
while the other orbitals are still itinerant. This OSMP
generally exists in both the iron vacancy ordered and
disordered cases, and survives a range of carrier doping.
It provides a necessary connection between the vacancy
ordered insulating phase and the metallic normal state
above Tc. Our results allow us to make contact with
recent ARPES measurements in this system [47].

Model and method. We consider a multiorbital Hub-
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FIG. 1. (Color online) a),c): The regular and 1/5-depleted
square lattices, respectively corresponding to the alkaline iron
selenides with disordered and the

√
5×

√
5 ordered iron vacan-

cies. b),d): Corresponding phase diagrams in the J-U plane
at filling N = 6 per Fe for the multiorbital model. The dark
and light shaded regions respectively refer to the Mott insu-
lator (MI) and the orbital-selective Mott phase (OSMP). The
red circles and blue diamonds respectively denote the Mott
transition and the crossover between the fully itinerant metal
and OSMP. The black dashed line shows the crossover scale
U∗ between the weakly and strongly correlated metals.

bard model for the K1−xFe2−ySe2 compound. The
Hamiltonian reads H = H0 + Hint. Here, H0 contains
the tight-binding parameters among the five 3d-orbitals,
H0 = 1

2

∑

ijαβσ tαβij d†iασdjβσ +
∑

iασ(ǫα − µ)d†iασdiασ,

where d†iασ creates an electron in orbital α = 1, ..., 5
with spin σ at site i, ǫα is the on-site energy reflect-
ing the crystal level splitting, and µ is the chemical
potential. We have taken the tight-binding parameters
from Ref. 46. Hint contains on-site Coulomb interactions
Hint =

U
2

∑

i,α,σ niασniασ̄+
∑

i,α<β,σ[U
′niασniβσ̄+(U ′−

J)niασniβσ − J(d†iασdiασ̄d
†
iβσ̄diβσ − d†iασd

†
iασ̄diβσ̄diβσ)],

where niασ = d†iασdiασ . Here, U , U ′, and J respectively
denote the intraorbital repulsion, interorbital repulsion,
and Hund’s rule exchange coupling, which are assumed
to be orbital independent and satisfy U ′ = U − 2J [48].

The MIT of the above model is studied using a U(1)
slave-spin method [44]. Here, a slave S=1/2 quantum
spin is introduced to carry the charge degree of freedom,
and the metallic (Mott insulating) state corresponds to
the magnetically (dis)ordered state of the slave spins
with quasiparticle spectral weight in each orbital Zα > 0
(Zα = 0). This method allows proper treatment of
Hund’s coupling, and yield results that compare well with
those from other methods such as the dynamical mean-
field theory [45]. We perform the calculation at zero tem-
perature [49], and drop the spin-flip and pair-hopping
terms in Hint for simplicity. Including these terms leads
to similar results [40]. We study the MIT on two two-
dimensional lattices of iron ions: a regular square lattice
sketched in Fig. 1(a) and a 1/5-depleted square lattice
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FIG. 2. (Color online) (a) and (b): Evolution of orbital re-
solved quasiparticle spectral weight Zα (in (a)) and orbital
filling factor (per iron site per spin) with U for the multior-
bital model at N = 6 and J/U = 0.2 on the regular lattice.
The vertical dashed line indicates the position of U∗, which
specifies the dashed line in Fig. 1(b). (c) and (d): Same as
(a) and (b) but on one of the two inequivalent sites of a unit
cell of the 1/5-depleted lattice. Zα for the xz and yz orbitals
switch on the other site, as do the orbital filling factors.

shown in Fig. 1(c). They respectively stand for the com-
pletely disordered and the perfect

√
5×

√
5 iron vacancies.

Metal-to-insulator transition. The results at the com-
mensurate filling corresponding toN = 6 3d electrons per
Fe are summarized in the phase diagrams of Figs. 1(b)
and (d). In both the vacancy disordered and ordered
cases, the system experiences a Mott transition at UMT

from a metal to a MI with increasing U . The insulating
phase is a low-spin MI for J/U . 0.01, but a S=2 high-
spin MI for larger J values. UMT first decreases then
increases with increasing J/U ratio. Such a nonmono-
tonic behavior is a general feature of systems away from
one electron per orbital, and is also obtained in the five-
orbital model for the parent iron pnictides [44]. When
the Hund’s coupling is above a threshold (J/U & 0.1),
the system crosses over from a weakly correlated metal
(WCM) to a strongly correlated metal (SCM) with in-
creasing U . The onset of this crossover (at U∗) is identi-
fied by a rapid drop of Zα and a kink in the orbital filling
in each orbital, as shown in Figs. 2(a)-(d). In the SCM,
Zα is strongly orbital dependent. Increasing U does not
lead to the simultaneous Mott localization of all orbitals.
The metallic state first crosses over to an intermediate
OSMP at UOS . The Mott transition then takes place
between the MI and the OSMP at a larger U .

Importantly, the phase diagram of the vacancy ordered
system is similar to that of its vacancy disordered coun-
terpart. Quantitatively, UMT and UOS are respectively
smaller in the vacancy ordered system, which reflects the
ordered-vacancy-induced reduction in the kinetic energy
and hence enhancement in the correlation effects [30].

Nature of the orbital-selective Mott phase. As shown
in Figs. 2(a) and (c), in the SCM regime, Z in the xy or-
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bital is suppressed the most, and this orbital is very close
to half-filling. Further increasing U results in the Mott
localization of the xy orbital at UOS . The other orbitals
remain itinerant up to UMT . The system is thus in an
OSMP for UOS < U < UMT . We now turn to discussing
the factors that stabilize the OSMP. For simplicity, we
limit our discussion to the vacancy disordered case. The
vacancy ordered case is qualitatively similar.

We start from the physics that governs the crossover
between the WCM and the SCM. Fig. 3(a) plots the

effective magnetic moment Seff =

√

〈(Sz)
2〉 as a func-

tion of J/U . It rapidly increases when the system passes
through the crossover. Inside the SCM, Seff ≈ 2, indi-
cating that the S = 2 high-spin configuration, promoted
by the Hund’s coupling, is dominant in this regime.

The Hund’s coupling also suppresses the inter-orbital
correlations Cα,β = 〈nαnβ〉 − 〈nα〉〈nβ〉, as shown in
Fig. 3(a). Together with the crystal level splitting, this
effectively decouples the xy orbital from the others be-
cause in K1−xFe2−ySe2 the xy orbital is the topmost level
and is well separated from the others. For the same rea-
son, this orbital is easier to be stabilized at half-filling
for an overall filling of six electrons per Fe, as shown in
Fig. 2(b) [and Fig. 2(d) for the vacancy-ordered case].
Compared to the degenerate xz/yz orbitals, which are
also close to half-filling, the threshold value for the Mott
localization in the non-degenerate xy orbital is smaller.
Moreover, in the noninteracting limit the density of states
(DOS) projected to the xy orbital is narrower than those
of other orbitals. For instance, as shown in Fig. 3(b),
the ratio of the width of DOS for the xy orbital to that
for the xz/yz orbitals is about 0.6. (This is also the case
for the vacancy ordered model; see the figure in the Sup-
plementary Material.) This ratio is smaller than that
for the LaOFeAs system, which is about 0.7. Hence in
K1−xFe2−ySe2 the xy orbital contains less kinetic energy.
Taking into account all the three factors, we find that in
the SCM, it is much easier to drive the xy orbital toward
the Mott localization. The result is the OSMP.

The threshold interaction for the OSMP, UOS , shows
a strong dependence on J especially when J/U is large.
This seems counterintuitive; one could expect that, if the
xy orbital is fully decoupled from the others, UOS should
approach the critical U of a single-band Hubbard model,
and hence should not depend on J . To understand the
behavior of UOS , we examine the propagation of a charge
excitation by assuming both U and J are large so that
we may take the ground-state configuration to be the
S = 2 high-spin state. A charge excitation with one
more electron filled in the ground state can propagate
via hopping to neighboring sites. Kxy (Kxy) denotes the
kinetic energy gain associated with the hopping processes
(not) involving the xy orbital. Two representative hop-
ping processes that do not disturbe the high-spin ground-
state configuration are illustrated in Fig. 3(c). Note that
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FIG. 3. (Color online) (a): Evolution of the effective moment
Seff and interorbital correlations Cxz,xy and Cxz,yz with J/U
at N = 6 and U = 3 eV on the regular lattice. The verti-
cal dashed line indicates the position of U∗(J). (b): Orbital
projected density of states in xy and xz/yz orbitals at the
noninteracting limit (J=U=0) of the same model. The curve
for the xy orbital is shifted upward for clarity. (c): Sketch
of the two hopping processes of a charge excitation on the
high-spin ground-state configuration that avoid penalty from
the repulsive interactions. (d): The differences in free energy
density as a function of J/U at U = 4.2 eV, showing the com-
petition among the metallic (M), Mott insulating (MI), and
orbital-selective Mott (OS) solutions.

Kxy < Kxy, not only because the xy orbital has a nar-
rower (non-interacting) bandwidth but also because the
Hund’s coupling suppresses the interorbital fluctuations.
The Mott gap associated with either process is estimated
as ∆a = E(N +1)+E(N − 1)− 2E(N) ≈ U − 3J −Ka,
where a = xy, xy. The difference in the kinetic energy
gains leads to two different Mott gaps. UOS (UMT ) can
be estimated as the U value where the Mott gap ∆a

vanishes. Hence we have UOS ∼ Kxy/(1 − 3J/U) and
UMT ∼ Kxy/(1 − 3J/U), both of which increase with
J/U . This general consideration is consistent with our
calculated phase boundaries for sufficiently large J/U .
Interestingly, in this regime, increasing J at a fixed U
leads to a delocalization from MI to OSMP, and then to
the metallic phase. This is further confirmed by com-
paring the free energies of the three states, as shown in
Fig. 3(d). Note that in the metallic phase, the inter-
orbital correlations between the xy orbital and others
are substantially suppressed, but remain nonzero. The
above argument on the behavior of UOS does not hold
for smaller J/U where UOS is close to U∗. In this regime,
since the ground state mixes both high- and low-spin con-
figurations, several mechanisms favoring either increasing
or decreasing UOS compete. As a result, UOS shows com-
plicated, even nonmonotonic, J dependence (Fig. 1(b)).

Orbital-selective Mott phase at finite dopings. Un-
like the MI, which exists only at a commensurate filling,
the OSMP can be stabilized at incommensurate fillings
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FIG. 4. (Color online) (a) and (b): Phase diagrams with U
and carrier doping concentration δ for the multiorbital model
at J/U = 0.2 on the regular (in (a)) and the 1/5-depleted
(in (b)) lattices, respectively. In either diagram, the large
red dot refers to the Mott transition, and the blue diamonds
shows the orbital-selective Mott transition. (c): Sketch of a
material-based phase diagram in the plane of carrier doping δ
and ordered vacancies. The vacancy order parameter has been
scaled to be between 0 and 1 (see text). The vacancy ordered
insulating state is located as the cyan square in this phase
diagram. The superconducting state is tentatively placed as
the orange triangle on the δ axis. The dash-dot line shows
a possible route to connect the two phases. For realistic pa-
rameters, the Mott transition point is close to the origin, but
could be either above or below it.

if the chemical potential of the itinerant carriers falls in-
side the Mott gap of the localized orbital. In Figs. 4(a)
and (b) we show the U vs. carrier doping concentration
(δ = N − 6) phase diagrams for both the vacancy dis-
ordered and ordered cases. In both systems, the Mott
transition takes place between a MI and an OSMP at
the commensurate filling δ = 0, and an OSMT between
the OSMP and the metal extends to nonzero doping con-
centrations. In the vacancy ordered case, both the Mott
transition and the OSMT take place at lower U values
compared to the vacancy disordered case, reflecting the
enhanced correlations due to ordered vacancies.

Unified phase diagram for alkaline iron selenides. The
above results lead to a unified phase diagram, as sketched
in Fig. 4(c). Here, the horizontal axis refers to the carrier
doping δ, and the vertical axis stands for the strength of
the vacancy order. In general, an K1−xFe2−ySe2 system
contains both vacancy ordered and disordered regimes.
We may parameterize the strength of the vacancy order
from 0 to 1, according to the volume fraction of the va-
cancy ordered regime (or, alternatively, to the potential
strength of a virtual Fe atom, with the vacancy corre-
sponding to an infinite potential). The two limiting cases
along the vertical axis in the phase diagram, 0 and 1, are
obtained from Figs. 4(a) and (b) at a fixed U (which takes

the value in real materials), respectively. The remaining
part of the phase diagram can then be constructed by
interpolating between the results in Figs. 4(a) and (b)
at the same U . The resulting diagram consists of a MI,
an OSMP, and a metal. The profile is similar to what
are shown in Figs. 4(a) and (b) because, effectively, the
ordered vacancies enhance the correlation U/D. (Here D
is a characteristic bandwidth of the multiorbital system.)
The insulating compound with the

√
5×

√
5 vacancy or-

der is located at δ = 0 and vacancy order 1 (square cyan
symbol in Fig. 4(c)). On the other hand, we tentatively
place the superconducting phase of the superconducting
compounds at ambient pressure to be on the δ axis in
the metallic state close to the OSMT (triangular orange
symbol in Fig. 4(c)). We see that one physical trajectory
going from the insulating phase to the superconducting
one is for the dopants to both introduce extra carriers and
suppress the vacancy order: the OSMP is an unavoidable
intermediate phase connecting the two states.

The OSMP has direct experimental signature. In this
phase, the quasiparticle spectral weight of the dxy orbital
vanishes. Our prediction has recently been confirmed
by ARPES measurements [47], which, in K1−xFe2−ySe2,
have observed a rapid crossover into an OSMP. By mea-
suring superconducting, insulating and semiconducting
K1−xFe2−ySe2, the ARPES study [47] has also provided
evidence for the overall phase diagram we have derived
for the alkaline iron selenides, with the superconducting
phase being close to the OSMT.

It is instructive to put our results in broader contexts.
Our results here connect to the general considerations
about the orbital-dependent behavior [50] for the iron
pnictides. In addition, while the OSMP appears here
in the multi-orbital Hubbard model, which is more per-
tinent to the iron-based materials than the Anderson-
lattice model discussed in the context of high pressure
effects on the iron pnictides [51], our results do relate to
the studies of the orbital-dependent localization for quan-
tum phase transitions in the latter model for correlated
metallic systems. More generally, the OSMP reported
here highlights in a particularly striking way the orbital
sensitivity of the electron correlation effects, which is also
important in a variety of transition-metal oxides [52].

In summary, we have studied the metal-to-insulator
transition in the five-orbital Hubbard model for
K1−xFe2−ySe2 with and without ordered vacancies. We
find that the Mott localization of the system is via an
intermediate orbital-selective Mott phase, in which the
3d xy orbital is localized while the other 3d orbitals are
itinerant. This phase persists over a range of carrier dop-
ings. Finally, we have proposed a unified phase diagram
for the alkaline iron selenides, with the orbital-selective
Mott phase serving as the link between the insulating
and superconducting compounds. Our results provide
evidence that electron correlations play a vital role in the
superconductivity of the iron-based superconductors.
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