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We report on the dynamic behavior of strongly nonlinear discrete materials with 

anomalous strain softening behavior.  Rarefaction solitary waves found in numerical 

calculations agree well with the exact solution to the continuum wave equation.  

Compression pulses generated by impact quickly disintegrate into a leading rarefaction 

solitary wave followed by an oscillatory wave train containing localized excitations.  

Such behavior is favorable for metamaterials design of shock absorption layers as well as 

tunable information transmission lines for scrambling of acoustic information.   

PACS numbers: 05.45.Yv, 46.40.Cd, 43.25.+y, 45.70.-n 

 



Discrete periodic materials with a “normal” power-law relationship between force 

and displacement,  for n > 1, have been shown to support compression solitary 

waves [1-9].  When dynamic forces between masses are significantly larger than the 

initial force applied to the system, these materials exhibit strongly nonlinear behavior, 

which has been considered in recent investigations of shock mitigation barriers, 

waveguides for acoustic switches and rectification [3,4,6,10]. These materials can support 

compression solitary wave solutions traveling in one-dimensional chains or ordered two 

and three−dimensional arrays of particles [1,2].  Conversely, a discrete chain with an 

interaction law exhibiting a general softening behavior (first considered in [11]) supports 

rarefaction solitary waves and rarefaction shock-like waves if dissipation is present [2].  

Stationary rarefaction waves were investigated in magnetized Hall plasmas and are 

thought to explain observed anomalous behavior due to a changing electric field [12].  

Depression solitary waves have also been investigated previously in liquid Hg [13]. 

An elastic or viscoelastic softening behavior is exhibited by a decreasing of elastic 

modulus with strain in a wide range of materials ranging from polymer foams [14,15] and 

rubber [16,17] to actin networks in biological tissues [18,19].  In general, these materials 

share several common characteristics under compressive loading: a viscoelastic softening 

behavior due to configuration changes in polymer chains [15,16,17,20] or the elastic 

collapse of cell-wall structures in polymer foams [14, 21-24].  Both softening phenomena 

are followed by a stiffening behavior attributed to the bulk resistance to further 

deformation.   

Here, we consider a simple one-dimensional metamaterial composed of point masses 

interacting with a force-displacement relationship,  for n < 1.  For example, these 

F ∝ δ n



materials can be assembled in a chain from stainless steel cylinders separated by flat 

layers of low-density polymer foam or solid rubber.  In this case, the “rigid” steel 

cylinders can be considered as point masses m connected by a “soft” and massless 

nonlinear spring.  Analogous strongly nonlinear metamaterials have recently been 

investigated with stainless steel cylinders separated by polymer o-rings [7,8,25,26].  The 

Hamiltonian of this system may be written in terms of the displacement of the cylinders, 

ui, ܪ ൌ ∑ ቂ௠௨ሶ ೔మଶ ൅ ܷ൫ߜ௜,௜ାଵ൯ቃ௜  where δi,i+1 = ui - ui+1.  The potential energy of interacting i-

th and (i+1)-th particles is defined as 

  ܷ൫ߜ௜,௜ାଵ൯ ൌ ௜,௜ାଵ/ሺ݊ܭ ൅ 1ሻ ቄ൫ߜ௜,௜ାଵ ൅ ௜,௜ାଵ൯௡ାଵݏ െ ௜,௜ାଵ௡ݏ ൣሺ݊ ൅ 1ሻߜ௜,௜ାଵ ൅  ௜,௜ାଵ൧ቅା (1)ݏ

where the ‘+’ outside of the curly brackets indicate that only positive values of relative 

displacement, δ, are taken and Ki,i+1 is the effective stiffness constant corresponding to 

the power law interaction between the i-th and (i+1)-th particles. The parameter ‘s’ in Eq. 

(1) is introduced to account for initial slope of the force displacement relationship for the 

‘i’th location (ܨ ൌ െܷ݀ሺߜሻ/݀ߜ).  The resulting equation of motion is,   ݑሷ ௜ ൌ ௜ିଵ,௜ߜ௜ିଵ,௜ൣ൫ܣ ൅ ௜ିଵ,௜൯௡ݏ െ ௜ିଵ,௜௡ݏ ൧ା െ ௜,௜ାଵߜ௜,௜ାଵൣ൫ܣ ൅ ௜,௜ାଵ൯௡ݏ െ ௜,௜ାଵ௡ݏ ൧ା  (2) 

where Ai-1,i= Ki-1,i/m and 0 < n < 1.  Initial displacements caused by an external force may 

also be included in ui. This form of the force-displacement relationship, when cast as 

stress and strain, is very similar to the simple power law model for the compression of 

solid rubber found in [15,16]. 

The long−wave approximation for Eq. (2) is derived assuming that the distance 

between centers of masses, a, is significantly less than the characteristic length of 

propagating wave L.  To simplify the following discussion it will be assumed that 



parameters m, A and s are uniform.  The long wave approximation to Eq. (2) is presented 

below, 

௧௧ݑ ൌ െܿ௡ଶ ൜ቀ௦௔ െ ௫ቁ௡ݑ ൅ ௡௔మ଺ሺ௡ାଵሻ ൤ቀ௦௔ െ ௫ቁሺ௡ିଵሻ/ଶݑ ൬ቀ௦௔ െ  ௫ቁሺ௡ାଵሻ/ଶ൰௫௫൨ൠ௫,         (3)ݑ

where cn
2 = Aan+1 is a parameter with units of speed.  The long wave sound speed c0 in 

the chain of particles is found through the linearization of Eq. (3), ܿ଴ଶ ൌ ݊ܿ௡ଶሺߦ଴ ൅ݏ/ܽሻ௡ିଵ.  Equation (3) may be reduced to a nonlinear ordinary differential equation for 

the specific case of a stationary wave propagating with speed V, 

ఎఎݕ     ൅ ݕ െ ሺ೙షయሻሺ೙శభሻିݕ ൅ ܥሺ೙షభሻሺ೙శభሻିݕ ൌ 0,                           (4) 

for arbitrary values of n. In Eq. (4), y is a reduced form of the strain (ξ = -ux), 

, C is a constant and η is the normalized coordinate

 

Eq. (4) can be rewritten as an equation for a nonlinear oscillator moving in an 

effective “potential field”, d2y/dη2 = -dW(y)/dy where W(y) is defined as 

   ܹሺݕሻ ൌ ଵଶ ଶݕ െ ௡ାଵସ ݕ రሺ೙శభሻ ൅ ݕଵܥ మሺ೙శభሻ.                             (5) 

For an anomalous interaction between particles, 0 < n < 1, rarefaction solitary waves 

exist when C1 = C(n+1)/2 is bound by [2, 11], 

     ௡మିଵଶ ݊௡/ሺଵି௡ሻ ൏ ଵܥ ൑ ௡ିଵଶ ቀ ଶ௡௡ାଵቁ ೙ሺభష೙ሻ.                              (6) 

The value of C1 defines system behavior between weakly and strongly nonlinear regimes 

corresponding to the lower and upper bound of C1, respectively. 

Three curves in Fig. 1(a) show the potential field W(y) for the strongly (curve (1)) and 

weakly (curve (3)) nonlinear regimes.  Along each of these curves we may consider that a 

y = (cn /V ) n +1( ) / n −1( ) s /a + ξ( ) n +1( ) / 2

η = x /a 6(n +1) /n .



particle moves from its initial position in the wave (y1, corresponding to ξ0) to ymin 

(related to ξmin) and back to y1 (Fig.1 (a)). An interesting value of y1 corresponds to the 

case where the minimum of y is equal to zero, which results in an expression that depends 

only on the power-law exponent,  [2,11].  This special case is 

shown in curve (1) with n = 1/2, C1 = -1/6 (the upper bound of C1 in Eq. (6)) and y1 = 

(2/3)3/2.  The variations in y are relatively large in strongly nonlinear regimes (see curves 

(1) and (2) in Fig. 1 (a)) and may be infinitesimally small in the weakly nonlinear regime 

(see curve (3)) near the lower bound value of C1 = -0.1875 (for n=1/2).  

Figure 1 (b) shows the numerical solution of Eq. (4) for the three values of C (where 

C= C1 2/(n+1)) corresponds to the curves in Fig. 1 (a).  The width of the wave increases 

in the weakly nonlinear case compared to the strongly nonlinear case (compare curves 1 

and 2 to curve 3 in Fig. 1 (b)).  Also, the shape of a strongly nonlinear solitary wave with 

minimum strain equal to zero (when s=0) is similar to solitary waves with finite 

minimum strain (compare curves (1) and (2)).   

It is interesting that a strain perturbation solution of Eq. (3), (i.e. ξ=ξ0+Δξ), results in 

a KdV type depression solitary wave similar to found in [13].  The weakly nonlinear 

solution is ߦ ൌ ଴ߦ െ Δξsechଶ൫ሺݔ െ ߦ൯ for n<1 where Δܮ/ሻݐܸ ൌ 6ܿ଴ሺܸ ൅ ܿ଴ሻ/߬, ܮ ൌඥ12ߙ/ሺ߬Δߦሻ, ߬ ൌ ሺ1 െ ݊ሻܿ଴ଶ/ሺߦ଴ ൅ ߙ ,଴/ܽሻݏ ൌ ܽଶܿ଴ଶ/12. This also means that these 

depression solitary waves are partial solutions to the system described here.  It should be 

mentioned that the interaction law between neighboring particles in Eq. (2) is assumed 

non-dissipative.  We are primarily investigating the solitary wave structure, which may 

be weakly attenuating with dissipation but still preserving its main features as in [13] or 

y1 = 2n /n +1( )(1+n ) / 2(1−n )



be accompanied by a secondary shock-like wave structure as in [27], which would 

require a separate investigation.  

The exact solution for the long wave approximation can be found for the case where 

the minimum value of y is equal to zero and C1 is given by the maximum value in Eq. (6).  

In the system of reference moving with the wave and centered at the minimum value of 

strain, an exact solution can be obtained for n = 1/2 and C1 = -1/6 by substituting Eq. (5) 

into ߟ ൌ ׬ ሻ௬଴ݕඥെ2ܹሺ/ݕ݀   giving, 

ݕ             ൌ ሺ2/3ሻଷ/ଶหtanhଷ൫√26/ߟ൯ห.                                         (7) 

The corresponding equation for the strain is (for s=0), ߦ ൌ    ሻ.                                                 (8)ܽ/ݔ଴tanhସሺߦ

The exact solution in Eqs. (7) and (8) predicts a symmetric cup-shaped pulse with a 

characteristic pulse length equal to 7a for a cut-off of ξ/ξ0=0.98.  The pulse width does 

not depend on the amplitude of the solitary wave similar to the case for compressive 

solitary waves in a “sonic vacuum” where n>1 [2].  Equation (7) is shown in Fig. 1(b), 

curve (1), for n=1/2.  In contrast to the strongly nonlinear compression wave in a sonic 

vacuum, the strongly nonlinear rarefaction waves defined by Eqs. (7) and (8) are not 

“compact” solitary waves.   

A closed form expression may be constructed for strongly nonlinear solitary 

rarefaction waves for values of 0<n<1.  Here, the amplitude is equal to the value of y1 and 

the width of the wave depends on values of n,  

                      (9) 

The full width at half-maximum (FWHM) in terms of x/a is easily found for Eq. (9), 

y =
2n
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FWHM ൌ ඥ2/ሺ1 െ ݊ሻarctanh ቂ2 ష೙భశ೙ቃ.  Interestingly, a minimum value of this FWHM 

corresponds to n=0.38 where x/a=2.113.  It is also interesting to find the relationships 

between the phase speed V and the strain ξ.  The phase speed can be found using the 

properties of the potential function; W(y = ymin) = W(y = y1) and , giving, 

௥ܸ ൌ ௖೙కబିకౣ౟౤ ቄଶൣ௡ሺ௦/௔ାకబሻ೙శభାሺ௦/௔ାక೘೔೙ሻ೙శభିሺ௡ାଵሻሺ௦/௔ାకబሻ೙ሺ௦/௔ାక೘೔೙ሻ൧௡ାଵ ቅଵ/ଶ. (10) 

In the case of a solitary rarefaction wave where ξmin = 0, Eq. (10) becomes,  

              (11) 

The ratio of the solitary wave speed, Vs,r to the sound speed c0 is greater than 1 for 

0<n<1, meaning the solitary rarefaction wave speed is supersonic [2].   

The shape and speed of the wave in numerical calculations of a discrete chain must be 

compared to Eqs. (8)-(11) since they were derived from the long-wave approximation.  

The corresponding numerical calculations are performed in Matlab using ODE45 to 

integrate the system of equations in Eq. (2).  Energy is conserved within 10-10% and 

momentum is conserved within 10-12% in each simulation.  The boundary conditions are 

such that the chain is initially compressed with an external constant force and the point 

masses (with m=5g) are in their initial static positions due to the action of this force.  The 

force is held constant in time and the first particle is given an initial velocity to simulate 

impulse loading directed either toward or against the rest of the chain.  Each calculation 

uses the constants for a uniform chain; n=1/2, ξ0=0.033, s=5 · 10ିହ m, and A=1 · 10ହ 

N/m1/2 unless specified otherwise.  An experimentally reasonable value for a is 6mm 

where the deformable element is 1mm and the rigid mass is 5mm in length.  When the 

∂W /∂y y =y1
= 0

Vs,r =
cn

ξ0

2 n s /a + ξ0( )n +1
+ s /a( )n +1 − s /a n +1( ) s /a + ξ0( )n[ ]

n +1

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
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deformable elements are strained by 20%, this gives ξ0=0.033.  Figure 2 shows the results 

from simulations using 10001 discrete masses where constant force of F0=4.37N is 

applied to both the first and last particle.  The first and last particles were given an initial 

velocity v0=-0.775 and 0.775m/s, which produces two colliding solitary rarefaction waves 

with a minimum strain equal to zero (Fig. 2(a) corresponds to t=2.5s).  The result of the 

applied static compression force and specific initial velocities is the formation of two 

solitary rarefaction waves.  The rarefaction waves propagate faster than their oscillatory 

wave trains and separate from it within approximately 80 particles.  The minimum of the 

left wave occurs at the 4927th and 4946st particles at 2.51s and 2.52s, respectively, giving 

an average speed of 11.78 m/s, which differs from the predicted speed of 11.72 m/s from 

Eq. (10) within 1%.  Figure 2(b) demonstrates the inelastic scatter behind the two leading 

pulses after the collision of two rarefaction solitary waves.  Figure 2(c) shows a 

comparison between the right moving wave from Figs. 2(b) and a solitary rarefaction 

wave traveling in a chain without a left-moving wave.  The phase shift and oscillations 

behind the main pulse are not present in the latter case.   

It is important to validate the analytical expressions given in Eq. (7)-(9) by 

comparison with the discrete simulations because the width of the solitary wave is 

comparable to the distance between particles.  Figure 3 shows this comparison for n=1/5, 

1/2 and 4/5.  The same initial strain, stiffness value (A=1 · 10ହ N/mn), and slope 

parameter (s=0) were used in each calculation.  The force and velocity necessary for the 

creation of a strongly nonlinear rarefaction wave were f0=91 N, v0=-1.69 m/s for n=1/5, 

f0=7.1 N, v0=-0.729 m/s for n=1/2 and f0=0.549 N, v0=-0.313 m/s for n=4/5.  The 

calculations for a discrete system show that there are approximately 7 particles 



comprising the pulse for n=1/2 and n=1/5 and 9 particles for n=4/5. It is interesting that 

the difference between the discrete strain values and Eq. (9) is smaller for n=4/5 than for 

n=1/2, indicating that: (1) discreteness plays an important role which is clearly observed 

by comparison between the exact solution and numerical calculations for n=1/2 and (2) 

alternative approaches may be pursued to better approximate the pulse shape and wave 

speed to account for these differences [28].  

An illustrative example of impact is shown in Fig. 4 where an impact velocity of 3 

m/s was given to the first particle, to which a constant force is applied and the position of 

the last particle was fixed.  The initial compression pulse quickly attenuates due to 

nonlinear dispersion and the first rarefaction pulse immediately behind it eventually 

becomes the leading pulse after traveling approximately 475 particles.  This behavior is 

quite counterintuitive since impact loading is expected to result in compression pulse for 

“normal” materials.  

The arrow (1) in Fig. 4 is pointing to a slowly moving wave packet (i.e. an envelope 

solitary wave) indicating that breather modes may exist in chains with an exponent n<1.  

This observation suggests that the presence of breather modes is not restricted to discrete 

chains with hardening power laws, where a periodic assembly or mass impurity is 

requisite [29-31].  Multiple types of waves may be supported by this system including 

KdV, envelope type and strongly nonlinear solitary and shock-like rarefaction waves 

which may be important for energy transport or new types of information carriers in 

electrical system analogs. 

It is interesting that solitary rarefaction waves may arise by specifying a velocity 

toward or away from the rest of the chain and suggests different methods to test materials 



experimentally.  This is not possible for strongly nonlinear compression waves in 

granular media where n>1 due to the absence of a restoring force. 

We investigated rarefaction waves in nonlinear periodic systems with a ‘softening’ 

general power-law relationship between force and displacement to understand the 

dynamic behavior of this class of metamaterials.  An exact closed form expression 

describing the shape of the strongly nonlinear rarefaction wave for n=1/2 agrees well 

with numerical simulations of discrete system.  The width of the investigated strongly 

nonlinear solitary wave does not depend on the amplitude and it is smallest for n=0.38 in 

investigated interval of values of n.  The agreement between the theoretical and 

numerical pulse speed of the waves is within 1%.  It was shown that the solitary wave 

speed was supersonic and is inversely proportional to the initial strain of the system.  

Impact on a compressed chain of particles generated a rarefaction solitary wave as the 

leading pulse.   

The authors wish to acknowledge the support of this work by the U.S. NSF (Grant 

No. DCMS03013220). 
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FIG. 1:  (a) Three curves for different values of C1 are shown for the potential function, 

Eq. (5), with n = ½ Curve (1): C1 = -1/6 and the value of y1 corresponds to (2/3)3/2. Curve 

(2): C1 = -11/64 and y1 = 0.517. Curve (3): C1 = -0.1869 and y1 = 0.381.  (b) Solution of 

Eq. (4) for corresponding values of C.  The width of the wave is larger for smaller values 

of C.  Each curve starts at a different value of y1 (shown by●in part (a)).  Curve (1): C = -

2/9, y1 = (2/3)3/2. Curve (2): C = -11/48, y1 = 0.517. Curve (3): C = -0.249, y1 = 0.381.  

All three curves have been shifted horizontally for comparison. 



 
FIG. 2:  Development of a two solitary rarefaction strain waves in a chain of 10001 

particles compressed with a static force of 4.37 N corresponding to a force-displacement 

relationship with n = ½, s = 5 10-5 m, A = 1 · 10ହ N/m1/2.  The initial velocities for the 

first and last particles are -0.775 and 0.775 m/s.  (a) The leading rarefaction pulse 

separates from the following oscillatory wave train (not shown) after travelling 

approximately 80 particles. (b) Two rarefaction pulses have crossed leaving an oscillatory 

tail behind.  (c) Results from (b) are compared (curve (1)) with a right moving wave in a 

chain where there is no collision with a left-moving wave (curve (2)).  The minimum 

strain value of curve (1) is 4e-4 and the phase shift in time between curves (1) and (2) is 

0.5 ms. 

 



  

FIG. 3: (color online) Strain from discrete simulations with 1000 particles for n = 1/5 
(blue ), 1/2 (green ), and 4/5 (red +) is compared to Eq. (9) (corresponding solid 
lines).  The relevant material parameters were s = 0 and A = 1 · 10ହ. Eq. (9) slightly 
overestimates the width (FWHM) of the solitary rarefaction wave. 
  



 

FIG. 4: Impact of a discrete chain of 500 particles at 3 m/s.  The chain was compressed 

with a static force of 4.37 N with n = 1/2, s = 5 · 10ିହ m, A = 1 · 10ହ N/m1/2.  At time 

t=0.03 s a compression pulse is followed closely by an oscillatory wave train (strain 

offset by 0.12).  At time t=0.16 s a rarefaction pulse is shown passing the compression 

pulse (strain offset by 0.06).  At time t=0.26 s the initial disturbance quickly disintegrates 

due to nonlinear dispersion into wave packets, periodic waves and the leading rarefaction 

solitary wave after travelling approximately 475 particles.  The strain is offset by 0.12 for 

visual clarity.  The arrow (1) is pointing to a slowly moving wave packet (i.e. an 

envelope solitary wave). 

 


