

CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Observation of an Energy-Dependent Difference in Elliptic Flow between Particles and Antiparticles in Relativistic Heavy Ion Collisions L. Adamczyk *et al.* (STAR Collaboration)

Phys. Rev. Lett. **110**, 142301 — Published 2 April 2013 DOI: 10.1103/PhysRevLett.110.142301

¹ Observation of an energy-dependent difference in elliptic flow between particles and ² anti-particles in relativistic heavy ion collisions

L. Adamczyk¹, J. K. Adkins²³, G. Agakishiev²¹, M. M. Aggarwal³⁴, Z. Ahammed⁵³, I. Alekseev¹⁹, J. Alford²², 3 C. D. Anson³¹, A. Aparin²¹, D. Arkhipkin⁴, E. Aschenauer⁴, G. S. Averichev²¹, J. Balewski²⁶, A. Banerjee⁵³, 4 Z. Barnovska¹⁴, D. R. Beavis⁴, R. Bellwied⁴⁹, M. J. Betancourt²⁶, R. R. Betts¹⁰, A. Bhasin²⁰, A. K. Bhati³⁴, 5 Bhattarai⁴⁸, H. Bichsel⁵⁵, J. Bielcik¹³, J. Bielcikova¹⁴, L. C. Bland⁴, I. G. Bordyuzhin¹⁹, W. Borowski⁴⁵, 6 J. Bouchet²², A. V. Brandin²⁹, S. G. Brovko⁶, E. Bruna⁵⁷, S. Bültmann³², I. Bunzarov²¹, T. P. Burton⁴, 7 J. Butterworth⁴⁰, X. Z. Cai⁴⁴, H. Caines⁵⁷, M. Calderón de la Barca Sánchez⁶, D. Cebra⁶, R. Cendejas³⁵, 8 M. C. Cervantes⁴⁷, P. Chaloupka¹³, Z. Chang⁴⁷, S. Chattopadhyay⁵³, H. F. Chen⁴², J. H. Chen⁴⁴, J. Y. Chen⁹, 9 L. Chen⁹, J. Cheng⁵⁰, M. Cherney¹², A. Chikanian⁵⁷, W. Christie⁴, P. Chung¹⁴, J. Chwastowski¹¹, 10 M. J. M. Codrington⁴⁸, R. Corliss²⁶, J. G. Cramer⁵⁵, H. J. Crawford⁵, X. Cui⁴², S. Das¹⁶, A. Davila Leyva⁴⁸, 11 L. C. De Silva⁴⁹, R. R. Debbe⁴, T. G. Dedovich²¹, J. Deng⁴³, R. Derradi de Souza⁸, S. Dhamija¹⁸, B. di Ruzza⁴, 12 L. Didenko⁴, F. Ding⁶, A. Dion⁴, P. Djawotho⁴⁷, X. Dong²⁵, J. L. Drachenberg⁵², J. E. Draper⁶, C. M. Du²⁴, 13 L. E. Dunkelberger⁷, J. C. Dunlop⁴, L. G. Efimov²¹, M. Elnimr⁵⁶, J. Engelage⁵, G. Eppley⁴⁰, L. Eun²⁵, 14 O. Evdokimov¹⁰, R. Fatemi²³, S. Fazio⁴, J. Fedorisin²¹, R. G. Fersch²³, P. Filip²¹, E. Finch⁵⁷, Y. Fisyak⁴, 15 E. Flores⁶, C. A. Gagliardi⁴⁷, D. R. Gangadharan³¹, D. Garand³⁷, F. Geurts⁴⁰, A. Gibson⁵², S. Gliske², 16 O. G. Grebenyuk²⁵, D. Grosnick⁵², A. Gupta²⁰, S. Gupta²⁰, W. Guryn⁴, B. Haag⁶, O. Hajkova¹³, A. Hamed⁴⁷, 17 L-X. Han⁴⁴, J. W. Harris⁵⁷, J. P. Hays-Wehle²⁶, S. Heppelmann³⁵, A. Hirsch³⁷, G. W. Hoffmann⁴⁸, D. J. Hofman¹⁰, 18 S. Horvat⁵⁷, B. Huang⁴, H. Z. Huang⁷, P. Huck⁹, T. J. Humanic³¹, G. Igo⁷, W. W. Jacobs¹⁸, C. Jena³⁰, 19 E. G. Judd⁵, S. Kabana⁴⁵, K. Kang⁵⁰, J. Kapitan¹⁴, K. Kauder¹⁰, H. W. Ke⁹, D. Keane²², A. Kechechyan²¹, 20 A. Kesich⁶, D. P. Kikola³⁷, J. Kiryluk²⁵, I. Kisel²⁵, A. Kisiel⁵⁴, S. R. Klein²⁵, D. D. Koetke⁵², T. Kollegger¹⁵, 21 J. Konzer³⁷, I. Koralt³², W. Korsch²³, L. Kotchenda²⁹, P. Kravtsov²⁹, K. Krueger², I. Kulakov²⁵, L. Kumar²², 22 M. A. C. Lamont⁴, J. M. Landgraf⁴, K. D. Landry⁷, S. LaPointe⁵⁶, J. Lauret⁴, A. Lebedev⁴, R. Lednicky²¹, 23 J. H. Lee⁴, W. Leight²⁶, M. J. LeVine⁴, C. Li⁴², W. Li⁴⁴, X. Li³⁷, X. Li⁴⁶, Y. Li⁵⁰, Z. M. Li⁹, L. M. Lima⁴¹, 24 M. A. Lisa³¹, F. Liu⁹, T. Ljubicic⁴, W. J. Llope⁴⁰, R. S. Longacre⁴, Y. Lu⁴², X. Luo⁹, A. Luszczak¹¹, G. L. Ma⁴⁴ 25 Y. G. Ma⁴⁴, D. M. M. D. Madagodagettige Don¹², D. P. Mahapatra¹⁶, R. Majka⁵⁷, S. Margetis²², C. Markert⁴⁸, 26 H. Masui²⁵, H. S. Matis²⁵, D. McDonald⁴⁰, T. S. McShane¹², S. Mioduszewski⁴⁷, M. K. Mitrovski⁴, 27 Y. Mohammed⁴⁷, B. Mohanty³⁰, M. M. Mondal⁴⁷, M. G. Munhoz⁴¹, M. K. Mustafa³⁷, M. Naglis²⁵, B. K. Nandi¹⁷, 28 Md. Nasim⁵³, T. K. Nayak⁵³, J. M. Nelson³, L. V. Nogach³⁶, J. Novak²⁸, G. Odyniec²⁵, A. Ogawa⁴, K. Oh³⁸, 29 A. Ohlson⁵⁷, V. Okorokov²⁹, E. W. Oldag⁴⁸, R. A. N. Oliveira⁴¹, D. Olson²⁵, M. Pachr¹³, B. S. Page¹⁸, S. K. Pal⁵³ 30 Y. X. Pan⁷, Y. Pandit¹⁰, Y. Panebratsev²¹, T. Pawlak⁵⁴, B. Pawlik³³, H. Pei¹⁰, C. Perkins⁵, W. Peryt⁵⁴, P. Pile⁴, 31 M. Planinic⁵⁸, J. Pluta⁵⁴, N. Poljak⁵⁸, J. Porter²⁵, A. M. Poskanzer²⁵, C. B. Powell²⁵, C. Pruneau⁵⁶, N. K. Pruthi³⁴, 32 M. Przybycien¹, P. R. Pujahari¹⁷, J. Putschke⁵⁶, H. Qiu²⁵, S. Ramachandran²³, R. Raniwala³⁹, S. Raniwala³⁹, 33 R. L. Ray⁴⁸, C. K. Riley⁵⁷, H. G. Ritter²⁵, J. B. Roberts⁴⁰, O. V. Rogachevskiy²¹, J. L. Romero⁶, J. F. Ross¹², 34 L. Ruan⁴, J. Rusnak¹⁴, N. R. Sahoo⁵³, P. K. Sahu¹⁶, I. Sakrejda²⁵, S. Salur²⁵, A. Sandacz⁵⁴, J. Sandweiss⁵⁷, 35 E. Sangaline⁶, A. Sarkar¹⁷, J. Schambach⁴⁸, R. P. Scharenberg³⁷, A. M. Schmah²⁵, B. Schmidke⁴, N. Schmitz²⁷, 36 T. R. Schuster¹⁵, J. Seger¹², P. Seyboth²⁷, N. Shah⁷, E. Shahaliev²¹, M. Shao⁴², B. Sharma³⁴, M. Sharma⁵⁶. 37 S. S. Shi⁹, Q. Y. Shou⁴⁴, E. P. Sichtermann²⁵, R. N. Singaraju⁵³, M. J. Skoby¹⁸, D. Smirnov⁴, N. Smirnov⁵⁷, 38 D. Solanki³⁹, P. Sorensen⁴, U. G. deSouza⁴¹, H. M. Spinka², B. Srivastava³⁷, T. D. S. Stanislaus⁵², J. R. Stevens²⁶, 39 R. Stock¹⁵, M. Strikhanov²⁹, B. Stringfellow³⁷, A. A. P. Suaide⁴¹, M. C. Suarez¹⁰, M. Sumbera¹⁴, X. M. Sun²⁵, 40 Y. Sun⁴², Z. Sun²⁴, B. Surrow⁴⁶, D. N. Svirida¹⁹, T. J. M. Symons²⁵, A. Szanto de Toledo⁴¹, J. Takahashi⁸, 41 A. H. Tang⁴, Z. Tang⁴², L. H. Tarini⁵⁶, T. Tarnowsky²⁸, J. H. Thomas²⁵, J. Tian⁴⁴, A. R. Timmins⁴⁹, D. Tlusty¹⁴, 42 M. Tokarev²¹, S. Trentalange⁷, R. E. Tribble⁴⁷, P. Tribedy⁵³, B. A. Trzeciak⁵⁴, O. D. Tsai⁷, J. Turnau³³, 43 T. Ullrich⁴, D. G. Underwood², G. Van Buren⁴, G. van Nieuwenhuizen²⁶, J. A. Vanfossen, Jr.²², R. Varma¹⁷, 44 G. M. S. Vasconcelos⁸, F. Videbæk⁴, Y. P. Viyogi⁵³, S. Vokal²¹, S. A. Voloshin⁵⁶, A. Vossen¹⁸, M. Wada⁴⁸, 45 F. Wang³⁷, G. Wang⁷, H. Wang⁴, J. S. Wang²⁴, Q. Wang³⁷, X. L. Wang⁴², Y. Wang⁵⁰, G. Webb²³, J. C. Webb⁴, 46 G. D. Westfall²⁸, C. Whitten Jr.⁷, H. Wieman²⁵, S. W. Wissink¹⁸, R. Witt⁵¹, Y. F. Wu⁹, Z. Xiao⁵⁰, W. Xie³⁷, 47 K. Xin⁴⁰, H. Xu²⁴, N. Xu²⁵, Q. H. Xu⁴³, W. Xu⁷, Y. Xu⁴², Z. Xu⁴, L. Xue⁴⁴, Y. Yang²⁴, Y. Yang⁹, P. Yepes⁴⁰, 48 L. Yi³⁷, K. Yip⁴, I-K. Yoo³⁸, M. Zawisza⁵⁴, H. Zbroszczyk⁵⁴, J. B. Zhang⁹, S. Zhang⁴⁴, X. P. Zhang⁵⁰, Y. Zhang⁴², 49 Z. P. Zhang⁴², F. Zhao⁷, J. Zhao⁴⁴, C. Zhong⁴⁴, X. Zhu⁵⁰, Y. H. Zhu⁴⁴, Y. Zoulkarneeva²¹, M. Zyzak²⁵ 50 (STAR Collaboration) 51 ¹AGH University of Science and Technology, Cracow, Poland 52 ²Argonne National Laboratory, Argonne, Illinois 60439, USA 53

54	³ University of Birmingham, Birmingham, United Kingdom
55	⁴ Brookhaven National Laboratory, Upton, New York 11973, USA
56	⁵ University of California, Berkeley, California 94720, USA
57	⁶ University of California, Davis, California 95616, USA
58	['] University of California, Los Angeles, California 90095, USA
59	^o Universidade Estadual de Campinas, Sao Paulo, Brazil
60	⁹ Central China Normal University (HZNU), Wuhan 430079, China
61	¹⁰ University of Illinois at Chicago, Chicago, Illinois 60607, USA
62	¹¹ Cracow University of Technology, Cracow, Poland
63	¹³ Curl Technical University, Omaha, Nebraska 68178, USA
64	¹⁴ Nuclear Division Institute AS CD - 050 69 Ďež (Descrito Creach Denvilie)
65	¹⁵ University of Frankfurt Frankfurt Cormony
67	¹⁶ Institute of Physics Rhybaneswar 751005 India
69	¹⁷ Indian Institute of Technology Mymbai India
69	¹⁸ Indiana, University, Bloominaton, Indiana, 47408, USA
70	¹⁹ Alikhanov Institute for Theoretical and Experimental Physics, Moscow, Russia
71	²⁰ University of Jammu, Jammu 180001. India
72	²¹ Joint Institute for Nuclear Research. Dubna. 141 980. Russia
73	²² Kent State University, Kent, Ohio 44242, USA
74	²³ University of Kentucky, Lexington, Kentucky, 40506-0055, USA
75	²⁴ Institute of Modern Physics, Lanzhou, China
76	²⁵ Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
77	²⁶ Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
78	²⁷ Max-Planck-Institut für Physik, Munich, Germany
79	²⁸ Michigan State University, East Lansing, Michigan 48824, USA
80	²⁹ Moscow Engineering Physics Institute, Moscow Russia
81	³⁰ National Institute of Science Education and Research, Bhubaneswar 751005, India
82	³¹ Ohio State University, Columbus, Ohio 43210, USA
83	³² Old Dominion University, Norfolk, VA, 23529, USA
84	³⁴ Denich University Chardianth 100011 India
85	³⁵ Denneuluenie, State University, University, Dank, Denneuluenie, 16200, USA
86	³⁶ Institute of High Energy Physics, Proteino, Russia
87	³⁷ Purdue University West Lafavette Indiana 17907 USA
80	³⁸ Pusan National University Pusan Republic of Korea
90	³⁹ University of Rajasthan, Jaipur 302004, India
91	⁴⁰ Rice University, Houston, Texas 77251, USA
92	⁴¹ Universidade de Sao Paulo, Sao Paulo, Brazil
93	⁴² University of Science & Technology of China, Hefei 230026, China
94	⁴³ Shandong University, Jinan, Shandong 250100, China
95	⁴⁴ Shanghai Institute of Applied Physics, Shanghai 201800, China
96	⁴⁵ SUBATECH, Nantes, France
97	⁴⁶ Temple University, Philadelphia, Pennsylvania, 19122
98	⁴ Texas A&M University, College Station, Texas 77843, USA
99	⁴⁰ University of Texas, Austin, Texas 78712, USA
100	⁴³ University of Houston, Houston, TX, 77204, USA
101	⁵¹ United Chatter Neurl Anderson American MD 21102 UCA
102	United States Navai Academy, Annapolis, MD 21402, USA ⁵² Valnamino, Universita: Valnamino, Indiana, 16989, USA
103	53 Variable Energy Cyclotron Centre, Kolkata 700061 India
105	⁵⁴ Warsan University of Technology Warsan Poland
105	⁵⁵ University of Washington Seattle Washington 98195 USA
107	⁵⁶ Wayne State University. Detroit. Michiaan 18201. USA
108	⁵⁷ Yale University. New Haven. Connecticut 06520. USA and
109	⁵⁸ University of Zagreb, Zagreb, HR-10002, Croatia
110	Elliptic flow (v_2) values for identified particles at mid-rapidity in Au+Au collisions, measured
111	the STAR experiment in the Beam Energy Scan at RHIC at $\sqrt{s_{NN}} = 7.7-62.4$ GeV, are present

by ed. A beam-energy dependent difference of the values of v_2 between particles and corresponding antiparticles was observed. The difference increases with decreasing beam energy and is larger for baryons compared to mesons. This implies that, at lower energies, particles and anti-particles are not consistent with the universal number-of-constituent-quark (NCQ) scaling of v_2 that was observed at $\sqrt{s_{NN}} = 200$ GeV.

Lattice Quantum Chromodynamics (QCD) predicts¹⁷⁰ 118 that at sufficiently high temperatures, T, and/or high₁₇₁ 119 baryonic chemical potentials, μ_B , normal nuclear mat-120 ter will undergo a phase transition to a state of mat-173 121 ter where quarks and gluons are deconfined, called the 122 Quark-Gluon Plasma (QGP) [1]. This transition is im_{175} 123 portant for understanding the early evolution of the uni-124 verse [2]. A Beam Energy Scan (BES) program [3] has¹⁷⁰ been carried out at the Relativistic Heavy Ion Collider 125 126 (RHIC) facility to study the QCD phase structure over 127 a large range in T and μ_B . 128

Particle production in heavy ion collisions with respect¹⁸⁰ to the event plane (EP) can be characterized by the follaz lowing Fourier expansion:

$$\frac{dN}{d(\phi - \Psi)} \propto 1 + 2\sum_{n \ge 1} v_n^{obs} \cos\left[n(\phi - \Psi)\right], \qquad (1)_{_{185}}^{_{184}}$$

where ϕ is the azimuthal angle of the particles, n the¹⁸⁷ harmonic number, v_n^{obs} the observed Fourier coefficient¹⁸⁸ which has to be corrected for the EP resolution to get v_n ,¹⁸⁹ and Ψ the reconstructed EP azimuthal angle [4, 5]. The¹⁹⁰ second harmonic coefficient is denoted as elliptic flow,¹⁹¹ v_2 [4].

Elliptic flow measurements have been used to conclude $^{\scriptscriptstyle 193}$ 138 that strongly interacting partonic matter is produced in¹⁹⁴ 139 Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$ and that v_2 devel-¹⁹⁵ 140 ops in the early, partonic, stage. This conclusion is based 196 141 in part on the observed scaling of v_2 versus the trans-¹⁹⁷ 142 verse momentum, p_T , with the number of constituent-¹⁹⁸ 143 quarks (NCQ) [6–9] for hadrons at intermediate p_T (2¹⁹⁹ 144 to 5 GeV/c). Deviations from such a scaling for iden-²⁰⁰ 145 tified hadron $v_2(p_T)$ at lower beam energies is thus an²⁰¹ 146 indication for the absence of a deconfined phase [3]. 202 147

In a hydrodynamic picture, v_2 arises in non-central²⁰³ 148 heavy ion collisions due to an initial pressure gradient,204 149 which is directly connected to the eccentricity. This leads²⁰⁵ 150 to particle emission predominantly in the direction of the²⁰⁶ 151 maximum of the pressure gradient. During the expan-207 152 sion of the system the pressure gradient decreases, which₂₀₈ 153 means that elliptic flow primarily probes the early stage₂₀₉ 154 of a heavy ion collision. 155 210

For Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV, a mass or-₂₁₁ 156 dering in $v_2(p_T)$ between the different particle species₂₁₂ 157 was observed at low transverse momenta ($p_T < 2_{213}$ 158 GeV/c [6, 10, 11]. This behaviour can be described₂₁₄ 159 by non-viscous hydrodynamic calculations [12-17]. The₂₁₅ 160 relative mass ordering can be suppressed by using the₂₁₆ 161 reduced transverse kinetic energy $(m_T - m_0)$ instead of₂₁₇ 162 p_T , with $m_T = \sqrt{p_T^2 + m_0^2}$ and m_0 being the mass of the²¹⁸ 163 particle. At large $(m_T - m_0)$, a splitting in $v_2(m_T - m_0)_{219}$ 164 between baryons and mesons was observed which can-220 165 not be described by hydrodynamic calculations. This₂₂₁ 166 splitting can be explained, in part, by assuming that the₂₂₂ 167 particle production occurs via coalescence of constituent₂₂₃ 168 quarks [18]. 169 224

The v_2 values for π^{\pm} , K^{\pm} , K_S^0 , p, \bar{p} , ϕ , Λ , $\overline{\Lambda}$, Ξ^- , $\overline{\Xi}^+$, Ω^- , $\overline{\Omega}^+$ measured at mid-rapidity in minimum bias Au+Au collisions will be reported. The data were recorded by STAR, the Solenoidal Tracker at RHIC, for $\sqrt{s_{NN}} = 7.7, 11.5, 19.6, 27, 39$, and 62.4 GeV in the years 2010 and 2011 as part of the BES program [3].

STAR is a multi-purpose experiment at RHIC with a complete azimuthal coverage. The main detectors used for the data analysis were the Time-Projection Chamber (TPC) [19] for tracking and particle identification at pseudo-rapidities $|\eta| < 1.0$, and the Time-of-Flight (TOF) detector, which was especially important to identify charged particles at intermediate momenta. A minimum bias trigger was defined using a coincidence of hits in the Zero Degree Calorimeters, Vertex Position Detectors, or Beam-Beam Counters [20, 21]. To suppress events from collisions with the beam pipe (radius 3.95 cm), an upper limit cut on the radial position of the reconstructed primary vertex of 2 cm was applied. In addition, the z-position of the vertices was limited to values less than ± 70 cm. Collisions within a 0–80% centrality range of the total reaction cross section were selected for the analysis. The centrality definition is based on a comparison between the measured track multiplicity within $|\eta| < 0.5$ and a Glauber Monte-Carlo simulation [20].

The particle identification and yield extraction for long-lived charged hadrons $(p, \bar{p}, \pi^{\pm}, K^{\pm})$ was based on a combination of the ionization energy loss, dE/dx, in the TPC, the reconstructed momentum (p), and the squared mass, m^2 , from the TOF detector [21]. Short-lived particles which decay within the detector acceptance such as $\phi, \Lambda, \overline{\Lambda}, \Xi^-, \overline{\Xi}^+, \Omega^-, \overline{\Omega}^+$, and K_s^0 were identified using the invariant mass technique. The combinatorial background to the weakly decaying particles like Λ and Ξ was reduced by topological reconstruction. The remaining combinatorial background was fit and subtracted with the mixed event technique [21].

The event plane was reconstructed using the procedure described in Ref. [4]. In order to reduce the effects of non-flow contributions arising mainly from Hanbury-Brown Twiss correlations and Coulomb interactions, the event plane angles were estimated for two sub-events separated by an additional η -gap instead of using the full TPC event plane method [21]. For such an " η -sub-EP" reconstruction, one uses only the particles from the opposite η hemisphere with respect to the particle of interest and outside of an additional η -gap of $|\eta| > 0.05$. The non-flow contributions were studied for the six beam energies by comparing different methods of extracting v_2 for inclusive charged hadrons [20]. The four particle cumulant v_2 {4} strongly suppresses non-flow contributions. It has been shown that the difference between $v_2(\eta$ -sub) and $v_2{4}$ is 10–20% for 19.2, 27, and 39 GeV and decreases with decreasing energy. All observed values $(v_2^{\rm obs})$ were corrected on an event-by-event basis using the EP

FIG. 1. (Color online) The elliptic flow v_2 of protons and anti-protons as a function of the transverse momentum, p_T , for 0–80% central Au+Au collisions. The lower panels show the difference in $v_2(p_T)$ between the particles and anti-particles. The solid curves are fits with a horizontal line. The shaded areas depict the magnitude of the systematic errors.

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

262

263

FIG. 2. (Color online) The difference in v_2 between particles²⁵⁶ (X) and their corresponding anti-particles (\overline{X}) (see legend) as²⁵⁷ a function of $\sqrt{s_{NN}}$ for 0–80% central Au+Au collisions. The²⁵⁸ dashed lines in the plot are fits with a power-law function.²⁵⁹ The error bars depict the combined statistical and systematic₂₆₀ errors. ²⁶¹

resolution [22] which was calculated by comparing the 226 two η -sub-EP angles [20].

For each particle species, the cuts used for particle²⁶⁶ identification and background suppression were varied to²⁶⁷ estimate the systematic uncertainties. The errors were²⁶⁸ also estimated by varying the methods used to flatten²⁶⁹ the EP, to obtain the yields, and to extract the v_2 val-²⁷⁰ ues. A more detailed description of the detector setup²⁷¹ and the analysis can be found in Ref. [21]. ²⁷²

In Fig. 1, the p_T dependence of the proton and anti-²⁷³ proton v_2 is shown for Au+Au collisions at $\sqrt{s_{NN}} = {}^{274}$ 7.7, 11.5, 27, and 39 GeV. At all energies, the v_2 values²⁷⁵ increase with increasing p_T . At $p_T = 2 \text{ GeV}/c$, the mag-²⁷⁶ nitude of v_2 for protons increases with energy from about²⁷⁷

0.10 at 7.7 GeV to 0.15 at 39 GeV. Lower values of $v_2(p_T)$ are observed for anti-protons compared to protons at all energies. The difference in the v_2 values for protons and anti-protons increases with decreasing beam energy. The lower panels of Fig. 1 show the p_T dependence of the difference in v_2 for protons and anti-protons. No significant p_T dependence is observed, as characterized by the horizontal line fits. The negative values of the anti-proton v_2 at low p_T at $\sqrt{s_{NN}} = 11.5$ GeV could be influenced by absorption in the medium [23]. Suppressed or negative v_2 values are also observed at $\sqrt{s_{NN}} = 7.7$ GeV for different centralities [21].

The $v_2(p_T)$ behaviour for $\Lambda(uds)$, $\overline{\Lambda}(\bar{u}d\bar{s})$ and $\Xi^-(dss)$, $\overline{\Xi}^+(\bar{d}\bar{s}\bar{s})$ is similar to that for protons (*uud*) and antiprotons $(\bar{u}\bar{u}d)$. In all cases, the baryon anti-particle v_2 is lower than the corresponding particle v_2 . The $v_2(p_T)$ difference for Λ and $\overline{\Lambda}$ is in agreement with previous STAR results at $\sqrt{s_{NN}} = 62.4 \text{ GeV}$ [7]. For the mesons $\pi^+(u\bar{d})$, $\pi^{-}(\bar{u}d)$, and $K^{+}(u\bar{s}), K^{-}(\bar{u}s)$, the differences are smaller than those for the baryons (the anti-particle convention from [24] is used for mesons). At $\sqrt{s_{NN}} = 7.7$ GeV, the $v_2(p_T)$ difference between K^+ and K^- is a factor 5–6 smaller as compared to the baryons, with K^+ having a systematically larger $v_2(p_T)$ than the K^- . On the other hand, the $v_2(p_T)$ of the π^- is larger than the $v_2(p_T)$ of the π^+ . However, the magnitude of the difference for pions as a function of energy is similar to that for the kaons. The details of the p_T dependence of the difference in v_2 between particles and corresponding anti-particles can be found in Ref. [21].

Figure 2 summarizes the variation of the p_T independent difference in v_2 between particles and corresponding anti-particles with $\sqrt{s_{NN}}$. Here, $v_2(X) - v_2(\overline{X})$ denotes the horizontal line fit values of the difference in $v_2(p_T)$ between particles $X(p, \Lambda, \Xi^-, \pi^+, K^+)$ and corresponding anti-particles $\overline{X}(\overline{p}, \overline{\Lambda}, \overline{\Xi}^+, \pi^-, K^-)$. Larger v_2 values are found for particles than for antiparticles, except for pions for which the opposite ordering is observed. A monotonic increase of the magnitude of $\Delta v_2 = v_2(X) - v_2(\overline{X})$ with

FIG. 3. (Color online) The upper panels depict the elliptic flow, v_2 , as a function of reduced transverse mass, $(m_T - m_0)$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80% central Au+Au collisions at $\sqrt{s_{NN}} = 11.5$ and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon v_2 and the meson fits are shown in the lower panels.

decreasing beam energy is observed. The data can be₃₁₄
described by a power-law function.

While in Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$ a sin-₃₁₆ 280 gle NCQ scaling can be observed for particles and anti-₃₁₇ 281 particles, the observed difference in v_2 at lower beam₃₁₈ 282 energies demonstrates that this common NCQ scaling₃₁₉ 283 of particles and anti-particles splits. Such a breaking₃₂₀ 284 of the NCQ scaling could indicate increased contribu-₃₂₁ 285 tions from hadronic interactions in the system evolution₃₂₂ 286 with decreasing beam energy. The energy dependence₃₂₃ 287 of $v_2(X) - v_2(\overline{X})$ could also be accounted for by con-₃₂₄ 288 sidering an increase in nuclear stopping power with de-325 289 creasing $\sqrt{s_{NN}}$ if the v_2 of transported quarks (quarks₃₂₆ 290 coming from the incident nucleons) is larger than the v_{2327} 291 of produced quarks [25, 26]. Theoretical calculations $[27]_{328}$ 292 suggest that the difference between particles and anti-329 293 particles could be accounted for by mean field potentials₃₃₀ 294 where the K^- and \bar{p} feel an attractive force while the K^+_{331} 295 and p feel a repulsive force. 296 332

Most of the published theoretical calculations can re-333 297 produce the basic pattern, but fail to quantitatively re_{-334} 298 produce the measured v_2 difference [25–28]. So far, none₃₃₅ 299 of the theory calculations describes the observed order-336 300 ing of the particles. Therefore, more accurate calcula-337 301 tions from theory are needed to distinguish between the₃₃₈ 302 different possibilities. Other possible reasons for the ob-339 303 servation that the $\pi^- v_2(p_T)$ is larger than the $\pi^+ v_2(p_T)_{_{340}}$ 304 is the Coulomb repulsion of π^+ by the mid-rapidity net-₃₄₁ 305 protons (only at low p_T) and the chiral magnetic effect₃₄₂ 306 in finite baryon-density matter [29]. Simulations have to_{343} 307 be carried out to quantify if those effects can explain our_{344} 308 observations. 309 345

In Ref. [21], the study of the centrality dependence³⁴⁶ of Δv_2 for protons and anti-protons is extended to in-³⁴⁷ vestigate, if different production rates for protons and³⁴⁸ anti-protons as a function of centrality could cause the³⁴⁹ observed differences. It was observed that the differences, Δv_2 , are significant at all centralities.

The $v_2(m_T - m_0)$ and possible NCQ scaling was also investigated for particles and anti-particles separately. Figure 3 shows v_2 as a function of the reduced transverse mass, $(m_T - m_0)$, for various particles and antiparticles at $\sqrt{s_{NN}} = 11.5$ and 62.4 GeV. The baryons and mesons are clearly separated for $\sqrt{s_{NN}} = 62.4 \text{ GeV}$ at $(m_T - m_0) > 1 \text{ GeV}/c^2$. While the effect is present for particles at $\sqrt{s_{NN}} = 11.5$ GeV, no such separation is observed for the anti-particles at this energy in the measured $(m_t - m_0)$ range up to 2 GeV/ c^2 . The lower panels of Fig. 3 depict the difference of the baryon v_2 relative to a fit to the meson v_2 data with the pions excluded from the fit. The anti-particles at $\sqrt{s_{NN}} = 11.5$ GeV show a smaller difference compared to the particles. At $\sqrt{s_{NN}}$ = 11.5 GeV the difference becomes negative for the antiparticles at $(m_T - m_0) < 1 \text{ GeV}/c^2$ but the overall trend is still similar to the one of the particles and to $\sqrt{s_{NN}} =$ 62.4 GeV.

In Fig. 4, the $v_2(m_T - m_0)$ values scaled on both axes with the number of constituent-quarks are presented for $\sqrt{s_{NN}} = 11.5$ and 62.4 GeV. A simultaneous fit [30] to p, \bar{p}, Λ , and $\bar{\Lambda}$ at a given energy is shown as the dashed line. The differences between data and corresponding fits are shown in the lower panels. The general scaling holds, except for the ϕ mesons, for the various particles, as shown in panels a) and b) with deviations of ${\sim}10\%$ at a $(m_T - m_0)/n_q$ value of 0.7 GeV/ c^2 . A significant change in the scaling behaviour can be observed between baryon and anti-baryon v_2 from $\sqrt{s_{NN}} = 62.4$ GeV to 11.5 GeV, as shown in panels c) and d). The ϕ mesons are also an exception to the trend of other hadrons. At the highest $(m_T - m_0)/n_q$ values, the ϕ meson data point for $\sqrt{s_{NN}} = 11.5 \text{ GeV} (p_T = 1.9 \text{ GeV}/c)$ is 2.3σ lower than those of the other hadrons. This is comparable to

FIG. 4. (Color online) The number-of-constituent quark scaled elliptic flow $(v_2/n_q)((m_T - m_0)/n_q)$ for 0–80% central Au+Au collisions at $\sqrt{s_{NN}} = 11.5$ and 62.4 GeV for selected particles, frames a) and b), and a direct comparison between selected baryons and anti-baryons, frames c) and d). The dashed lines are simultaneous fits [30] to p, \bar{p}, Λ , and $\bar{\Lambda}$ at a given energy. The lower panels depict the differences to the fits. Some data points for ϕ are out of the plot range in the lower panels.

the observed deviation at $\sqrt{s_{NN}} = 7.7 \text{ GeV} (p_T = 1.7_{369})$ GeV/c) by 1.8σ [21]. The smaller v_2 values of the $\phi(s\bar{s})_{370}$ section [31], may indicate that hadronic interactions be- $_{372}$ come more important than partonic effects for the sys- $_{373}$ tems formed at collision energies $\lesssim 11.5 \text{ GeV}$ [32, 33].

In summary, the first observation of a beam-energy de-374 356 pendent difference in $v_2(p_T)$ between particles and corre-375 357 sponding anti-particles for minimum bias $\sqrt{s_{NN}} = 7.7^{-376}$ 358 62.4 GeV Au+Au collisions at mid-rapidity is reported.377 359 The difference increases with decreasing beam energy.378 360 Baryons show a larger difference compared to mesons.₃₇₉ 361 The relative values of v_2 for charged pions have the oppo-₃₈₀ 362 site trend to the values of charged kaons. It is concluded₃₈₁ 363 that, at the lower energies, particles and anti-particles are₃₈₂ 364 no longer consistent with the single NCQ scaling that was₃₈₃ 365 observed for $\sqrt{s_{NN}} = 200$ GeV. However, for the group₃₈₄ 366 of particles the NCQ scaling holds within $\pm 10\%$ while for₃₈₅ 367 the group of anti-particles the difference between baryon₃₈₆ 368

and meson v_2 continues to decrease to lower energies. We further observed that the ϕ meson v_2 at the highest measured $m_T - m_0$ value is low compared to other hadrons at $\sqrt{s_{NN}} = 7.7$ and 11.5 GeV with 1.8σ and 2.3σ , respectively.

We thank the RHIC Operations Group and RCF at BNL, the NERSC Center at LBNL and the Open Science Grid consortium for providing resources and support. This work was supported in part by the Offices of NP and HEP within the U.S. DOE Office of Science, the U.S. NSF, the Sloan Foundation, CNRS/IN2P3, FAPESP CNPq of Brazil, Ministry of Ed. and Sci. of the Russian Federation, NNSFC, CAS, MoST, and MoE of China, GA and MSMT of the Czech Republic, FOM and NWO of the Netherlands, DAE, DST, and CSIR of India, Polish Ministry of Sci. and Higher Ed., Korea Research Foundation, Ministry of Sci., Ed. and Sports of the Rep. of Croatia, and RosAtom of Russia, and VEGA of Slovakia.

- [1] D. J. Gross, R. D. Pisarski, and L. G. Yaffe, Rev. Mod.⁴⁰²
 Phys. 53, 43 (1981).
- ³⁸⁹ [2] C. Aktas and I. Yilmaz, Gen. Rel. Grav. **43**, 1577 (2011).⁴⁰⁴
- 390 [3] M. M. Aggarwal *et al.* [STAR Collaboration],405
- arXiv:1007.2613 [nucl-ex] (2010).
 [4] A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58,407
 1671 (1998).
- ³⁹⁴ [5] S. Voloshin and Y. Zhang, Z. Phys. C **70**, 665 (1996). ⁴⁰⁹
- J. Adams *et al.* [STAR Collaboration], Phys. Rev. Lett.410
 95, 122301 (2005).
- [7] B. I. Abelev *et al.* [STAR Collaboration], Phys. Rev. C₄₁₂
 75, 054906 (2007).
- [8] S. A. Voloshin, A. M. Poskanzer, and R. Snellings, 414
 arXiv:0809.2949 [nucl-ex] (2008). 415
- 401 [9] A. Adare et al. [PHENIX Collaboration], Phys. Rev. C416

85, 064914 (2012).

- [10] C. Adler *et al.* [STAR Collaboration], Phys. Rev. Lett. 87, 182301 (2001).
- [11] J. Adams *et al.* [STAR Collaboration], Phys. Rev. Lett. 92, 052302 (2004).
- [12] P. Huovinen, P. F. Kolb, U. W. Heinz, P. V. Ruuskanen, and S. A. Voloshin, Phys. Lett. B 503, 58 (2001).
- [13] C. Nonaka, R. J. Fries, and S. A. Bass, Phys. Lett. B 583, 73 (2004).
- [14] T. Hirano and Y. Nara, Phys. Rev. C 69, 034908 (2004).
- [15] C. Shen and U. Heinz, Phys. Rev. C 85, 054902 (2012)
 [Erratum ibid. C 86, 049903 (2012)].
- [16] B. Schenke, S. Jeon, and C. Gale, Phys. Rev. Lett. 106, 042301 (2011).
- [17] M. Csanad, T. Csorgo and B. Lorstad, Nucl. Phys. A

- ⁴¹⁷ **742**, 80 (2004).
- [18] D. Molnar and S. A. Voloshin, Phys. Rev. Lett. 91,434
 092301 (2003).
- [19] K. H. Ackermann et al., Nucl. Instr. and Meth. A 499,436
 624 (2003).
- 422 [20] L. Adamczyk *et al.* [STAR Collaboration], Phys. Rev. C₄₃₈
 423 86, 054908 (2012). 439
- 424 [21] L. Adamczyk *et al.* [STAR Collaboration],440 425 arXiv:1301.2348. 441
- ⁴²⁶ [22] H. Masui and A. Schmah, arXiv:1212.3650 [nucl-ex]₄₄₂ ⁴²⁷ (2012). ⁴⁴³
- [23] F. Wang, M. Nahrgang and M. Bleicher, Phys. Rev. C₄₄₄
 85, 031902 (2012).
- 430 [24] J. Beringer *et al.* [Particle Data Group Collaboration],446
 431 Phys. Rev. D 86, 010001 (2012). 447
- 432 [25] J. C. Dunlop, M. A. Lisa, and P. Sorensen, Phys. Rev. C448

84, 044914 (2011).

433

- [26] J. Steinheimer, V. Koch and M. Bleicher, Phys. Rev. C 86, 044903 (2012).
- [27] J. Xu, L. -W. Chen, C. M. Ko, and Z. -W. Lin, Phys. Rev. C 85, 041901 (2012).
- [28] T. Song, S. Plumari, V. Greco, C. M. Ko and F. Li, arXiv:1211.5511 [nucl-th].
- [29] Y. Burnier, D. E. Kharzeev, J. Liao and H. -U. Yee, Phys. Rev. Lett. 107, 052303 (2011).
- [30] X. Dong, S. Esumi, P. Sorensen, N. Xu, and Z. Xu, Phys. Lett. B 597, 328 (2004).
- [31] A. Sibirtsev, H. -W. Hammer, U. -G. Meissner and A. W. Thomas, Eur. Phys. J. A 29, 209 (2006).
- [32] B. Mohanty and N. Xu, J. Phys. G 36, 064022 (2009).
- [33] M. Nasim, B. Mohanty and N. Xu, arXiv:1301.1375 [nuclex].