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Understanding the mesoscopic behavior of dynamical systems described by Langevin equations with
colored noise is a fundamental challenge in variety of fields. We propose a new approach to derive
closed-form equations for joint and marginal probability density functions (PDFs) of state variables.
This approach is based on a so-called Large-Eddy-Diffusivity (LED) closure and can be used for
modeling a wide class of non-Markovian processes described by the noise with arbitrary correlation
function. We demonstrate the accuracy of the proposed PDF method for several linear and nonlinear

Langevin equations.

Langevin equations are ubiquitous in virtually every
scientific field, ranging from physics, biology and chem-
istry to economics and electronics. They provide a
mesoscale description of systems that are subjected to
(either internally generated or externally imposed) ran-
dom excitations (Langevin forces). The classical treat-
ment of Langevin problems approximates these excita-
tions as Gaussian white noise, which is appropriate for
Markovian systems. These assumptions are not appro-
priate for a large class of natural phenomena with tempo-
rally correlated and non-Gaussian Langevin forces (see [1,
App. Al] and the references therein). Analysis of such
non-Markovian systems, described by Langevin equa-
tions with “colored noise”, remains an open challenge.

Langevin (stochastic ordinary-differential) equations

dx; al
= hi(X, 1)+ g (X 4)(t), i=1,...

j=1

N (1)

describe the temporal evolution of N state variables X =
{X;}¥.,. The dynamics of each system variable X;(t)
consists of a slowly varying (deterministic) part h; and
a fast varying random part g;;&;, in which fluctuations
&;(t) have zero mean and a two-point covariance function

Cij(t,s) = (Gi(1)E€;(s)) = 4ij0ijpis(t, 8). (2)

Here g;; is the variance, d;; is the Kronecker delta func-
tion, and p;; is the correlation function. At any given
time ¢, the system’s state is defined by the joint prob-
ability P[X;1 < x1,...,XNn < xp;t] or, equivalently, by
its joint probability density function (PDF) px(x;t).
Derivation of equations that govern the dynamics of
px(x;t) in systems with uncorrelated in time (“white”)
noise &(t), i.e., with p(t,s) = 76(t — s) (7 is the charac-
teristic time), is relatively straightforward. For &(t) with
an arbitrary point-wise distribution, these equations are
called the Kramers-Moyal expansion (KME); the latter
reduces to the Fokker-Plank equation (FPE) if &() is
Gaussian [1]. To render the KME computable, it has to
be truncated after a finite number of terms. This trun-
cation can give rise to negative values of PDF [1, p. 9].
Treating the Langevin force &€(t) as white noise is ap-
propriate if fluctuations occur on time scales that are

much smaller than that of the mesoscale variables X(¢).
Two distinct frameworks have been proposed to deal with
non-Markovian systems with colored noise &(t).

The first approach introduces an additional Markovian
process to describe the evolution of £(¢). The result-
ing enlarged system is Markovian and, hence, can be de-
scribed by a FPE for the joint PDF of X and & [1, Sec.
3.5]. Then px is obtained by marginalizing a solution of
this FPE with respect to €. Alternatively, the enlarged
(Markovian) system of Langevin equations can be solved
with the unified colored noise approximation (UCNA) [2].
In UCNA, only limited functional forms of p;; allow a
Markovian representation. When UCNA is applicable,
it is valid only for certain conditions (e.g., large times)
and its computational cost soars as the phase dimension
increases. It is computationally prohibitive for systems
with many degrees of freedom or Langevin forces that
cannot be described by simple Markovian processes [1].

The second approach (see [3] for a review) is to de-
rive an equation for px(x,t) that, unlike KME, has a fi-
nite number of terms. This differential equation involves
random variables and requires a closure. Most existing
closures place restrictions on the noise properties. For ex-
ample, the decoupling theory (Hanggi ansatz) [2] requires
dimensionless € to be Gaussian, second-order stationary,
and have small variances g;; < 1; the small correlation-
time expansion [4] is limited to correlation times \;; — 0
and \;;/¢;; < 1; and the functional integral [2] and path-
integral [5] require € to be statistically homogeneous.

Our goal is to derive a closed-form computable PDF
equation for Langevin equations (1), in which the
Langevin force £(t) has an arbitrary correlation func-
tion and strength. To derive a governing equation for
px(x;t), we adopt the PDF method originally developed
in the context of turbulent flows [6]. Let us define a “raw”
joint PDF of system states X at time ¢,

(X, x;t) = _H S[Xi(t) — ). (3)

Its ensemble average over random realizations of X yields



px(x,t), the joint PDF of X:

N
() = / TL0.0¢ = ) pxc () -+ = px. (4

Multiplying the i-th Langevin equation (1) with OTI/9x;,
using the properties of the Dirac delta function §(-), and
summing up the resulting N equations yields the stochas-
tic evolution equation for II,

oIl

Here Vx = (0/0z1,...,0/0xNn)" and the i-th compo-

nent of the N-dimensional vector v = (v1,...,vx) " is
N
vi(%,1) = hi(%, 1) + Y i (%, 1)&;(t). (6)
j=1

Note that unlike its turbulent counterpart, the “advective
velocity” v is not divergence free, i.e., Vx - v # 0.

Employing the Reynolds decomposition to represent
the random fields in (5) as the sums of their ensemble
means and respective zero-mean fluctuations, and taking
the ensemble average of the resulting equation, yields an
unclosed PDF equation

WX o Ve ()~ Vo VI (7)
The same PDF equation was derived using different
methods in [2, 7]. It is not computable since it contains
the unknown cross-covariance (v'II'). A closure approx-
imation is needed to express (v'II') in terms of px and
(v). In the context of Langevin equations with colored
noise, such closures were proposed for particular forms of
the correlation function p;; (see the introduction).

The formal similarity between (5) and advective trans-
port of a passive scalar in a random velocity field al-
lows us to employ an alternative closure that is variously
known as the large-eddy diffusivity (LED) closure [8] or
the weak approximation [9]. This enables us to approxi-
mate (7) with a closed-form PDF equation

WX Ve (VIX) + Va (DVapx), (8)
The “eddy-diffusivity” (second-rank) tensor D and “ef-
fective velocity” vector V are expressed in terms of the
two-point “velocity” covariance tensor p,(x,t;y,s) =
(v'(x,t)v'(y,s)") and the mean-field Green’s function
G(x,y,t — s) for (5). The latter is defined as a solu-
tion of the deterministic equation 0G/0s + (v) - Vy,G =
—0(y — x)0(s — t), subject to the homogeneous initial
(and boundary) conditions corresponding to their (pos-
sibly inhomogeneous) counterparts for (5). Specifically,

D and V are given by [8, 9]

t

Dix, 1) = / / Gp,(x, by, s)dVy ds, (92)
0 Q
t

V(x,t) =(v) — //Gvy po(x,t;y, s)dNyds.  (9b)

0 Q

Recalling the definition of v in (6) yields

D- / Q/ Gle(x1) - O] - g(y,s) dVyds, (10a)

Vv =(v)- / / Glg(x.t) - O] - [Vy - g(y. 9)ldVy ds, (10b)
0 Q

where C(t,s) is the covariance matrix of the Langevin
force &€(t), whose components C;; are defined in (2).

PDF equations (8)—(10) are the main result of this Let-
ter. They are formally valid for Langevin forces with ar-
bitrary distributions and correlations. The LED approx-
imation accounts only for the first two moments of £&. Yet
it gives accurate and robust approximations of mean sys-
tem behavior (see [10] and the references therein). This
is all we need, since (IT) = px.

Unlike the currently used empirical closures, our (two-
point) closure rests on the solid mathematical founda-
tion. It can be viewed as a leading-order term in a per-
turbation expansion in the correlation length of v(t) [8],
and requires both px and its gradient to vary slowly in
the phase space [9]. Consequently, the accuracy of the
approximations of D and V can be improved by incorpo-
rating higher-order terms, e.g., by employing four-point
self-consistent closures [10].

In the remainder of this Letter, we examine the ability
of our PDF approach to handle Langevin systems with
Gaussian colored noise £&. We consider two distinct trans-
port phenomena: a linear process with additive noise
(Brownian motion) and a nonlinear process with mul-
tiplicative noise (hydrodynamic dispersion).

Brownian Motion. Classical Brownian motion involves
two Langevin equations for particle displacement X and
velocity U,

dX dU

T U, ETe KU + &(t), (11)
where K is the damping factor. The general PDF equa-
tion (8) with (10) reduces to

P*pxu
ou? ’

Ipxu _  Oupxu | OKupxu
ot Ox ou

with

+ Dy (12a)

t

Dy(t) = /C(t, s)e K=o ds.
0

(12b)



For uncorrelated (white noise) £(t), this equation reduces
to the classical Fokker-Planck equation.

Since the Langevin equations (11) are decoupled, we
also use the general PDF equation (8) to obtain PDF
equations for the marginal PDF's of velocity, py (u;t), and
displacement, px (z;1),

opy  OKupy *pu

ot ou +Du ou?’ (132)
Opx Ipx I’px

5 = (U) 3 +Dx B2 (13Db)

Here Dy is given by (12b), Dx (t) = fg Cy(t,s)ds, (U) =
Uy exp(—Kt), and

t s
CU(tus)://e_K(H_S_tl_tz)C(tl,tg)dtldtg. (13c)
0 0

The mean (U) is computed by averaging the second
Langevin equation in (11) and integrating the result. The
covariance Cy (t, s) is obtained by integrating the second
Langevin equation in (11), multiplying the result with
U’(s) and taking the ensemble average. The PDF equa-
tions (13) are identical to those obtained in [2] by relying
on a closure that is only applicable to linear Langevin
equations. In contrast, our PDF method is also valid for
nonlinear Langevin equations (1).

As discussed earlier, one of the prevalent approaches
to handling colored noise in Langevin systems is to en-
large the phase space. We use the first Langevin equa-
tion in (11), which is driven by colored noise U(t) with
Cu(t,s) = qexp(—|t — s|/A), to compare this framework
with ours. The extended phase-space approach (EPSA)
supplements this Langevin equation with a Langevin
equation for U(t)—the second equation in (11) in which
the Langevin force £(t) is treated as white noise—that
asymptotically produces the desired correlation structure
of U. Then, PDF of X (t) is found by integrating over u
the joint PDF solution pxy of the Focker-Planck equa-
tion (12). Figure 1 compares the PDF of the original
non-Markovian process given by (13) and the PDF of the
extended Markovian process. Since both PDFs are Gaus-
sian and have the same mean, Figure 1 shows only the
variances of the original and extended processes. While
the EPSA accurately predicts the asymptotic behavior of
the growth rate of the variance, it underestimates it at
early times (Kt < 1).

Hydrodynamic Dispersion. In lieu of the second ex-
ample, we consider a nonlinear Langevin equation that
describes dispersion in porous media [11]

dU

o = KU +g+VIULE®), (14)

were K is the friction coefficient (inversely proportional
to the permeability of a porous medium) and g is the

—OPS
8 —-—EPS

Figure 1. Temporal evolution of displacement variance o% (t)
in the original (OPS) and extended (EPS) phase spaces: the
LED closure for exponentially-correlated velocity (Color on-
line).

gravitational acceleration. The PDF method allows for
the noise £(t) to be a correlated random process with an
arbitrary covariance function C.

According to (8), the PDF of velocity U satisfies the
PDF equation

a]9U
ot - ou T ou

B _8VpU 0 (’%nl
— (’D 5 ) , (15a)

in which the effective velocity V(u,t) and the macro-
dispersion coefficient D(u, t) are given by

t
V=—Ku+g+ —V2|“| / C(t,s)e K= /II|ds (15b)
0

(15c¢)

t
D= /|yl /C(t,s)e’K(t’s)\/l/ || ds
0

where I = K/{(Ku— g)exp[—K(t —s)] + g}

Formally, the PDF equation (15) is valid for an ar-
bitrary covariance function C. As this equation was de-
rived using the LED closure, its accuracy may depend on
a specific form of C' and a magnitude of the correlation
time. In the following, we study the accuracy of the PDF
model (15) for two extreme cases of the noise correlation
time: A = 0, i.e., white noise & with C(t, s) = q7d(t, s);
and A\ = oo, i.e., random constant £ with C' = ¢.

For C(t,s) = qtd(t,s), our PDF equation is ex-
act as it yields the standard Fokker-Plank equation in
the Stratonovich formulation, in which effective veloc-
ity (15b) and dispersion coefficient (15¢) become the lead-
ing Kramers-Moyal coefficients [1]

V=-Ku+g=£q/2, D = qlul. (16)

For C' = ¢, for finite times we compare the numerical
solution of (15) with the velocity PDF obtained from
the Monte Carlo solution of (14). Figure 2 shows a good
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Figure 2. Temporal snapshots of velocity PDF py(u;t) for
colored noise with infinite correlation length at times tK =
0.1, tK = 0.5, the stationary solution from PDF method (17)
and the exact stationary solution (18) (Color online).

agreement between these two solutions. For infinite time,
Fig. 2 also shows a good agreement between the analyt-
ical steady-state solution of (15)

aw),

= e ([ 22

(N is the normalizing constant) and the exact steady-
state velocity PDF obtained from the steady-state solu-
tion of Langevin equation U = g/K + /|U|¢{/ K,

ss(cxact)(u) o K|Ust| +9g

U = Wpf [€(Ust)] - (18)

Given the accuracy of our PDF solutions at both ends
of the correlation length spectrum, we expect it to be
accurate for intermediate correlation times A as well.
Finally, we study the effect of the functional form of
the noise covariance function C' on pyy. While our PDF
method does not require £(¢) to be stationarity, for con-
sistency, we limit our analysis to three stationary correla-
tion functions C(t, s) = gp(|t— s|): white noise, exponen-
tial function and Gaussian function. The velocity PDFs
plotted in Fig. 3 demonstrate the significant impact of
noise correlation function p on the nonlinear dispersion
process (14). The white noise yields the longest distri-
bution tail, while the Gaussian correlation leads to the
most symmetric velocity PDF. Identical mean velocity at
tK = 10 is obtained for all three correlation functions.
In summary, we derived a closed form PDF equation
for general nonlinear Langevin equations with arbitrary
colored noise. This equation allows a theoretical treat-
ment of a wide class of non-Markovian processes. The
PDF equation relies on a large-eddy-diffusivity (LED)
closure. To demonstrate the accuracy of this closure
we solved linear and non-linear Langevin equations de-
scribing Brownian motion and hydrodynamic dispersion.
Our analysis leads to the following conclusions. 1) The
LED closure provides a good estimate of PDFs of system

Figure 3. Velocity distribution py(u;t) at dimensionless time
tK = 10 for three correlation functions: (1) Delta; (2) Expo-
nential and (3) Gaussian (Color online).

states for both linear and nonlinear Langevin systems
with Gaussian colored noise; 2) In contrast to the ex-
isting approaches, the LED closure does not impose any
restrictions on the noise’s correlation function, correla-
tion length. 3) Unlike its counterparts, our approach is
applicable for both early and late times. 4) Higher-order
of accuracy may be achieved by including more terms
in the LED approximation (8)—(10), which in turn may
relax the requirement of Gaussian noise.
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