
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Microscopic Theory of Resonant Soft-X-Ray Scattering in
Materials with Charge Order: The Example of Charge
Stripes in High-Temperature Cuprate Superconductors

David Benjamin, Dmitry Abanin, Peter Abbamonte, and Eugene Demler
Phys. Rev. Lett. 110, 137002 — Published 26 March 2013

DOI: 10.1103/PhysRevLett.110.137002

http://dx.doi.org/10.1103/PhysRevLett.110.137002


LW13083

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Microscopic theory of resonant soft x-ray scattering in systems with charge order

David Benjamin,1 Dmitry Abanin,1 Peter Abbamonte,2 and Eugene Demler1

1Physics Department, Harvard University, Cambridge, Massachusetts 02138, USA
2Department of Physics and Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, IL 61801, USA

(Dated: February 21, 2013)

We present a microscopic theory of resonant soft x-ray scattering (RSXS) that accounts for the
delocalized character of valence electrons. Unlike past approaches based on local form factors, our
functional determinant method treats realistic band structures. This method builds upon earlier
theoretical work in mesoscopic physics and accounts for excitonic effects as well as the orthogonality
catastrophe arising from interaction between the core hole and the valence band electrons. We show
that the two-peak structure observed near the O K edge of stripe-ordered La1.875Ba0.125CuO4 is
due to dynamical nesting within the canonical cuprate band structure. Our results provide evidence
for reasonably well-defined, high-energy quasiparticles in cuprates, and establishes RSXS as a bulk-
sensitive probe of the electron quasiparticles.

PACS numbers: 78.70.Ck, 61.05.cp, 74.72.Gh, 71.45.Lr

Introduction.– Resonant soft x-ray scattering (RSXS)
is a powerful technique for exploring strongly-correlated
quantum materials [1–3]. While neutron and non-
resonant x-ray scattering cross sections are dominated
by the contributions of nuclei and core electrons, RSXS
couples selectively to valence electrons and provides an
enormously enhanced sensitivity [4] to many-body corre-
lations [1–3, 5–15]. RSXS is able to study a wide class
of materials, including those available only in small sam-
ples and those with buried interfaces [13, 14]. RSXS
has recently been used to observe orbital order in man-
ganites [2, 5, 6] and ruthenates [8], hole crystallization in
spin ladders [7], and charge order in cuprates [3, 10, 15],
nickelates [9], and manganites [11, 12].

Although qualitative interpretation of RSXS data has
already yielded insights into a variety of strongly cor-
related materials, a complete quantitative understand-
ing of these experiments is still lacking. Most analyses
have adapted the use of atomic form factors from x-ray
crystallography [1, 3, 10, 11]. The form factor concept
assumes optical locality, which is valid for ordinary x-
ray diffraction, but breaks down in the resonant case if
valence states are delocalized. Some authors have at-
tempted to account for nonlocality by defining cluster,
rather than single-atom, form factors [5, 9]. But even this
approach breaks down if valence states are propagating
quasiparticles. Recently Abbamonte et al. [16] showed
that neglecting the finite lifetime of core holes and inter-
action of valence electrons with core holes allows one to
relate RSXS spectra to the local electron Green’s func-
tion measured in STM. However, these neglected effects
are expected to play an important role and it is not clear
how well this simplified analysis explains RSXS spectra
in real materials. The state of affairs in RSXS should be
contrasted to ARPES [17, 18] and STM [19–23], where
one can often read off spectral functions directly from
measurements, facilitating the comparison of theoretical
models with experimental results.

In this paper we present the first microscopic model
of elastic RSXS in systems with charge order in the va-
lence band, such as striped high-Tc cuprates [20, 24–
29]. Our method allows us to analyze RSXS spectra
for itinerant valence electrons with realistic bandstruc-
tures. It accounts for excitonic effects and the orthog-
onality catastrophe arising from the interaction of va-
lence electrons with core holes (for noninteracting va-
lence electrons our analysis is exact) as well as the fi-
nite lifetime of core holes. We explain the two-peak
spectrum observed in experiments at the O K edge of
La1.875Ba0.125CuO4 [3, 10] in terms of dynamical nesting
of the “standard” cuprate band structure (see Figs. 1
and 2). We find that interaction of valence electrons
with the core hole changes the spectrum significantly.
We obtain quantitative agreement with the experimen-
tal data on underdoped La1.875Ba0.125CuO4 (LBCO) and
La1.8−xEu0.2SrxCuO4 (LESCO) [3, 10]. Our results di-
rectly connect RSXS at the O K edge to band structure,
establishing it as a bulk-sensitive probe of electron quasi-
particles complementary to ARPES and STM.
Theoretical formalism for elastic RSXS.– Following

Ref. [16] we consider an effective single band model de-
scribing resonant absorption and emission of photons

Hint =
∑

j,k,λ

V (k, λ)
(

d†jcjak,λe
ik·r + h.c.

)

(1)

Here cj and dj annihilate electrons on site j in the core
orbital and valence band respectively, ak,λ annihilates
a photon with momentum k and polarization ε̂k,λ, and
V (k, λ) are matrix elements whose precise form is unim-
portant. Resonant scattering is a second order process
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Here |i〉 is the initial state of the system with N electrons
in the valence band and incoming photon ki; |n〉 is the
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FIG. 1. Calculated RSXS spectrum for the canonical cuprate
band-structure with period-4 charge order and core hole po-
tential U0 = −250 meV. The zero of ω′

≡ ω+ξc−Ef , where ξc
is the core level energy, is the energy required to excite a core
level to Ef in the absence of a core hole potential. Squares
are LBCO data from Ref. [3]. The position of the first peak is
determined by dynamical nesting and the core hole potential
and is not related to Ef [36].
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FIG. 2. Dynamical nesting in the cuprate band structure.
Nested contours E = Ef + 0.12 eV and E = Ef + 1.49 are
blue and red; the Fermi surface is black. The lines kx =
−3π/4,−π/4, π, 4, 3π/4 (dashed) are a visual guide.

transient state with a core hole, N +1 valence electrons,
and no photons; |f〉 is the final state with no core hole,
N valence electrons, and one outgoing photon with mo-
mentum kf . The transient state energy ẼN+1

n includes
the core hole potential. Γ is the decay rate of the core
hole. We focus on elastic scattering, where |f〉 = |i〉 and
Q = kf − ki is an ordering wavevector.

Because the core hole is immobile it is created and re-
filled on the same site j and contributes the trivial matrix
element 〈1|c†j |0〉〈0|cj |1〉 = 1. It may be subsumed into a
static potential U(r − rj) that acts on the valence elec-

trons of the transient state. Therefore, Eq. (2) becomes

I(ω,Q) ∝
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, (4)

where Sjσ(t) = 〈i|djσe
−iH1(j)td†jσe

iH0t|i〉,H0(1) is the
Hamiltonian of the valence electrons with(out) the core
hole potential, and matrix elements refer to the valence
electron Fock space. Without a core hole potential,
H1 = H0 and Sjσ(t) reduces essentially to a retarded
Green’s function [16]. Eq. (4) applies to a thermal en-
semble at temperature T = 1/β, provided that we use

Sjσ(t) =
Tr
[

djσe
−iH1(j)td†jσe

iH0te−βH0

]

Tr [e−βH0]
. (5)

Eqs. (4 - 5) apply to an arbitrary interacting valence
band Hamiltonian and are generalized to multiple bands
by adding orbital indices to electron operators and to
matrix elements for absorption and emission. Below, we
will limit our discussion to the model of non-interacting
electrons. This assumption is justified as long as the
lifetime of electron states in the valence band is longer
than the core hole lifetime Γ−1 (see discussion below).

In the absence of pairing interactions the operators
that define Sjσ(t) break up into commuting spin-σ
and spin-σ̄ parts and the initial electron state is a di-
rect product |iσ〉|iσ̄〉. Hence Sjσ(t) = SOC

j (t)SFES
j (t),

where SOC
j (t) = 〈iσ̄|e

−iH1(j)teiH0t|iσ̄〉 and SFES
j (t) =

〈iσ|dje
−iH1(j)td†je

iH0t|iσ〉. At non-zero temperature

SOC
j (t) =

Tr
[

e−iH1(j)teiH0te−βH0

]

Tr [e−βH0 ]
(6)

SFES
j (t) =

Tr
[

dje
−iH1(j)td†je

iH0te−βH0

]

Tr [e−βH0 ]
, (7)

where operators and traces refer to effective spinless sys-
tems polarized to σ̄ and σ, respectively.

SOC
j (t) appears in the orthogonality catastrophe of x-

ray absorption [30, 31]. It expresses the many-body over-
lap of the initial Fermi sea with the perturbed Fermi sea
that time evolves under H1. SFES

j (t) has been studied
in the context of the Fermi edge singularity in resonant
tunneling [32, 33], and in addition to the time evolution
of the Fermi sea expresses the dynamics of an injected
electron. A functional determinant method allows both
to be expressed in terms of the single-particle matrices
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Ĥ0,1 : H0,1 = (Ĥ0,1)ijd
†
idj [31, 32, 34, 35]

SOC
j (t) = det

(

(1− N̂) + Ûj(t)N̂
)

(8)

SFES
j (t) =SOC

j (t)

(

N̂

1− N̂
+ Û−1

j (t)

)−1

jj

, (9)

where N̂ ≡ (1 + exp(βĤ0))
−1 is the occupation num-

ber operator and Ûj(t) ≡ e−iĤ1(j)teiĤ0t is the in-
termediate state time evolution operator. Standard
steps [32, 34] work as follows: In a basis that di-
agonalizes H0, H0 =

∑

α ξαn̂a, the trace Tr
[

e−βH0

]

factors as
∏

α

∑

nα=0,1 e
−βnαξα =

∏

α(1 + e−βξα),
which is the product of eigenvalues, hence the de-
terminant, of 1 + e−βH0 . By the Baker-Campbell-
Haussdorff Lemma e−iH1teiH0te−βH0 = eW , where
W is quadratic, and hence Tr

[

e−iH1(j)teiH0te−βH0

]

=

det
(

1 + e−iH1(j)teiH0te−βH0

)

. SFES
j (t) requires addi-

tional algebra [32] of the inserted d†j and dj [36] .
We interpret Eq. (8) as follows: The determinant is

a device for calculating overlaps of Slater determinant
states, and its argument says to compute the overlap of
〈i|e−iH1t and eiH0t|i〉. The operator N̂ determines which
states are occupied in |i〉, while 1− N̂ contributes a triv-
ial factor of unity for unoccupied states. The additional
matrix element in Eq. (9) corresponds to single-particle
dynamics of the injected electron. It is a local Green’s
function for propagation of a single electron from site j
to site j, modified by the Pauli-blocking term N/(1−N).
For period-p order, one needs to sum over p inequivalent
sites j. The determinant can be evaluated efficiently for
a finite system, converging by a system size of 25 × 25.
Eqs. (4), (8), and (9) constitute a convenient formula for
calculating RSXS spectra in the approximation of non-
interacting electrons. They treat exactly the interaction
of electrons with the core hole and finite lifetime of the
core hole.
RSXS of cuprates.– We apply Eqs. (4) and (8-9)

to charge order in an effective one-band model of the
cuprates

H0 =
∑

k

ξkd
†
kdk + V

∑

k

(

d†k+Qdk + d†kdk+Q

)

. (10)

Eq. (10) is a phenomenological mean-field description of
charge ordering [25, 27, 37–40] that applies regardless
of its microscopic origin. Possible mechanisms include
electron-electron interactions, in which case charge order
is often called stripes [29, 41–44], and nesting of the Fermi
surface and electron-phonon interactions [45, 46]. We
use the dispersion ξk = −

∑

r e
ik·rtr − µ and parameters

t(1,0) = 340, t(1,1) = −32, t(2,0) = 25, t(2,1) = 31 meV
characteristic of LBCO [47]. For simplicity we ignore kz
dispersion, which would at most smear energy peaks by
an amount tz . 50 meV [47]. Fig. 1 presents an RSXS
spectrum for a contact potential U(r − rj) = U0δr,rj .

Yukawa potentials yield similar results [36] . We have
chosen a realistic core hole lifetime Γ = 250 meV.
Two peak structure. Fig. 1 shows the calculated RSXS

intensity versus photon energy. The two peak structure
of the spectrum agrees well with experiments [3, 10]. A
simple argument shows that the two peaks are a robust
feature of the cuprate band structure. In the limit of
zero core hole potential the only non-trivial time evolu-
tion in the transient state is that of the photo-excited
electron subject to the scattering potential of Eq. (10).
RSXS intensity comes from scattering |k〉 → |k + Q〉,
which occurs most readily when ξk, ξk+Q are nearly de-
generate. Intensity at energy E comes from points on
the surface of constant energy E that are separated by
wavevector Q [37]. Peaks occur when this contour has
segments nested by wavevectorQ, which yields large den-
sity of states for scattering. Equivalently, in this limit the
energy domain expression Eq. (3) reduces to

I(ω,Q) ∝
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. (11)

Eigenstates |φ〉 of H0 contribute in proportion to the Q-
component of their Fourier-transformed density. In the
presence of a CDW potential, this is due to hybridization
of |k〉 and |k+Q〉, which nesting again maximizes. Unlike
Fermi surface nesting, this dynamical nesting is a generic
consequence of symmetry. Consider the two-dimensional
cuprate Brillouin zone and period-4 CDW wavevector
Q = (π/2, 0). Any Bloch state |k〉 on the lines kx = −π/4
and kx = 3π/4 is degenerate with |k+Q〉. Constant en-
ergy contours tangent to the line kx = −π/4 (−3π/4)
are also tangent to kx = π/4 (3π/4); these symmetry-
equivalent segments are dynamically nested. Fermi sur-
face nesting requires the particular contour E = Ef to
be tangent to the lines. Dynamical nesting occurs when
some energy contour is tangent to the lines (see Fig. 2).
The energy contours of the chosen dispersion exhibiting
dynamic nesting correspond to energies 0.1 eV and 1.5
eV above the Fermi level– which are separated by nearly
the same amount as RSXS peaks.
Dynamical nesting explains the spectrum and its two

peaks qualitatively but does not give the correct relative
weights of the two peaks [36]. Including the core hole po-
tential yields quantitative agreement with experiments.
The core hole potential has a weak effect on the energy
separation between the two peaks but dramatically sup-
presses the high-energy peak [36] . A core hole poten-
tial strength U0 = −250 meV, which is reasonable for a
screened core hole interacting with valence electrons, re-
produces the experimental ratios of peak intensities. The
discussion of Ref. [16] connecting the RSXS spectrum to
the electron spectral function thus remains largely accu-
rate in the presence of a weak core hole potential. How-
ever, strong core hole potentials yield spectra with quali-
tative features, such as a missing high-energy peak, that
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would mislead analyses based only on the spectral func-
tion. For example, we attribute the absence of a second
peak in RSXS at the Cu L3/2 edge [3] to a strong Cu
core hole potential. The spectrum is robust to changes
in the core hole lifetime Γ, which broadens the peaks, and
the CDW strength V , which scales the overall intensity.
Small changes in the band structure have little effect.

Our calculations provide the first quantitative expla-
nation for the two peak structure observed in LBCO
and LESCO [3, 10]. An earlier interpretation of the
two peaks as arising from the lower and upper Hubbard
bands, the so-called “spatially-modulated Mottness”,
was not supported by quantitative analysis. Moreover, a
separation of ∼1.9 eV between peaks is found in x-ray ab-
sorption spectroscopy (XAS) of LBCO and LSCO [3, 48].
According to the lower/upper Hubbard band interpreta-
tion, in which between peaks there is a gap, the sepa-
ration between peaks in RSXS must be at least as large
as the separation in XAS. Thus we think that dynamical
nesting is more natural interpretation of the two peak
structure observed in LBCO and LESCO.

Discussion.– We now comment on the choice of band
structure. Ab-initio LDA calculations on LSCO give
t(1,0) = 430, t(1,1) = −40, t(2,0) = 30, t(2,1) = 35
meV [47] while fitting of the ARPES spectra gives t(1,0) =
250, t(1,1) = −25, t(2,0) = 20, t(2,1) = 28 [47]. The ratios
among tight-binding parameters are nearly identical for
both cases, so the band structure is well-known up to an
overall scaling factor. Two peaks appear in the RSXS
spectra for both band structures with nearly the same
relative intensities. We find that taking either the LDA
or ARPES dispersions gives peaks separated by 1.7 and
1.3 eV. We obtain the best fit to RSXS data by choosing
parameters halfway between the two. It is not surprising
that band structure obtained from the ARPES data does
not provide the best agreement with the RSXS spectra.
ARPES data only exist within 200 meV of the Fermi sur-
face [49], where the renormalization effect due to inter-
actions is strongest, while we are interested in features
at much higher energy. Additionally, it has been sug-
gested that ARPES tends to underestimate electron dis-
persion relative to x-ray experiments [47, 50]. Another
important issue is our approximation of non-interacting
electrons. The key quantity of our analysis is a gen-
eralized propagator (5). Interactions cause electrons to
decay into other excitations, but as far as the Green’s
function is concerned this simply contributes an imagi-
nary part to the electron’s self-energy (the effective one-
band model already incorporates renormalization via the
real part of self-energies). If the electron decays slowly
compared to the core hole any broadening introduced by
electron interactions will be hidden within the width Γ.
Conversely, rapid electron decay would broaden peaks
into oblivion. Therefore, the presence of peaks in an
RSXS spectrum puts an upper bound on the imaginary
self-energy and implies that excitations resemble well-

defined quasiparticles. Recent DMFT calculations [51]
have found long-lived electron quasiparticles in the Hub-
bard model well above the Fermi energy, in contrast to
short-lived hole-like excitations. RSXS, which probes
high-energy electron excitations, complements ARPES,
which probes hole-like excitations, and quantum oscilla-
tion experiments [52, 53], which probe excitations near
the Fermi energy.
Outlook.–The predictions of our model can be checked

in future experiments. For example, recent work on
charge order in underdoped YBCO [15], which was per-
formed at energies corresponding to Cu L edges, could be
repeated at the O K edge. We expect, as in LBCO, two
peaks at energies determined by band structure. Also,
systems with checkerboard charge order, with coexist-
ing Fourier components Qx and Qy, will exhibit a har-
monic at Qx +Qy. If the latter harmonic is sufficiently
strong, an RSXS signal will appear at this wavevector.
One can see that this ordering wavevector also has dy-
namical nesting at two energies, so we expect to find a
two peak spectrum[54].
Summary.– We have developed a microscopic model of

RSXS that takes into account the itinerant character of
valence electrons and excitonic effects. We showed that
a simple physical picture of dynamical nesting found in
the canonical band structure of cuprates gives rise to a
two peak structure, while the core hole potential is nec-
essary for quantitative agreement with the data. Our
analysis shows that even at high energies electronic exci-
tations behave like sufficiently well-defined quasiparticles
described by the canonical band structure.
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