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Physical vapor deposition provides a controllable means of growing two-dimensional 

metallic thin films and one-dimensional metallic nanorods.  While theories exist for the growth 

of metallic thin films, their counterpart for the growth of metallic nanorods is absent. Because of 

this absence, the lower limit of nanorod diameter is theoretically unknown; consequently the 

experimental pursuit of the smallest nanorods has no clear target. This Letter reports a closed-

form theory that defines the diameter of the smallest metallic nanorods using physical vapor 

deposition. Further, the authors verify the theory using lattice kinetic Monte Carlo simulations 

and validate the theory using published experimental data. Finally, the authors carry out a series 

of theory-guided experiments to grow metallic nanorods of ~10 nm in diameter, which are the 

smallest ever reported using physical vapor deposition. 
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 The growth of metallic nanorods, which are generally also crystalline, using physical 

vapor deposition (PVD) allows the control of crystalline structures and chemical composition 

[1,2]. Like in the growth of other materials, it is desirable to grow ever smaller nanorods to 

maximize their nanoscale functionalities [3-6]. The question is: what is the smallest nanorod 

possible using PVD?  One may expect that the growth theories of crystalline thin films [7-9] 

apply to the growth of metallic nanorods, since the two processes bear similarities. In contrast to 

the growth of crystalline thin films, the growth of metallic nanorods is dictated by the dynamics 

of multiple-layer surface steps; this differentiation is not addressed by the existing theories of 

thin film growth. Consequently, the growth theories of crystalline thin films are not applicable to 

the growth of metallic nanorods [10]. Without a theoretical foundation of nanorod growth, the 

physical limit of the smallest diameter is unknown. As a result, the pursuit of the smallest 

nanorods has no clear target, and consequently no clear path to the target.  

In this Letter, we present (1) a closed-form theory of the smallest diameter, (2) 

verification of the theory using lattice kinetic Monte Carlo (LKMC) simulations and validation 

using previous experiments, and (3) realization of the smallest nanorods using theory-guided 

PVD experiments.    

 For the theoretical formulation, the conceptual framework of nanorod growth serves as 

the starting point [10]. In contrast to the theories for the growth of large crystals [7-9], this 

framework recognizes that multiple-layer surface steps are kinetically stable [11]; in contrast, the 

classical theory predicts that such steps are kinetically unstable [12]. Further, these multiple-

layer surface steps dictate the diffusion of adatoms during nanorod growth [13-15]. Under this 

framework, metallic nanorods grow in two modes – I and II (Fig. 1). In mode I, the growth takes 

place on wetting substrates and nanorods have the shape of a tower [16]. The competition 
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between multiple-layer and monolayer surface steps defines the diameter of nanorods, and also 

defines the slope on the side of nanorods. The diameter becomes smaller if more of the surface 

steps are multiple-layer instead of monolayer. In mode II, the growth takes place on non-wetting 

substrates and nanorods have the shape of a cylinder (or of an inverted tower if they grow 

sufficiently tall). Because of the complete, or nearly complete, dominance of multiple-layer 

surface steps over monolayer surface steps, growth mode II results in the smallest diameter of 

nanorods. 

 
FIG. 1 (color online). (a) Schematic of the two modes of nanorod growth, with mode II giving 

rise to the smallest nanorods; and (b) evolution of a nanorod as a function of time for mode II.  

 

 Focusing on growth mode II, we first describe our physical model of nanorod growth; the 

mathematical formulation then turns the model into a closed form theory. The model starts with 

nucleation on a non-wetting substrate [snapshot 1t  in Fig. 1(b)]. Due to non-wettability, the 

critical size of nucleating the second layer is one atomic diameter. As nanorods grow, they 

receive atomic flux only on the top due to complete geometrical shadowing. Once the deposited 

atoms overcome the large diffusion barrier of multiple-layer steps, they experience much smaller 

diffusion barriers on the sides and therefore tend to distribute equally along the vertical direction. 

As a result, they have the shape of a cylinder [snapshot 2t  in Fig. 1(b)]. Since the diameter of the 
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nanorods is small, only one adatom will be on top most of the time, and a new layer nucleates 

once two adatoms present simultaneously; this is also called the lone adatom model (LAM) [9]. 

The snapshot 2t  in Fig. 1(b) shows the configuration with the nucleus of a new layer. Aiming at 

the smallest diameter, we consider the complete geometrical shadowing condition – that is, 

atoms are deposited onto only the top of nanorods, not onto the sides. With the small diameter of 

nanorods and the large diffusion barrier at the multiple-layer steps or edges of the nanorods, the 

newly nucleated layer will grow to full coverage before any deposited atoms diffuse to the side. 

The snapshot 3t  in Fig. 1(b) shows the configuration when the coverage of one layer is complete. 

The snapshot 4t  in Fig. 1(b) is similar to the snapshot 2t , except with one extra layer on top of 

the nanorod.  

Based on the physical model of nanorod growth, the clock in our theoretical formulation 

starts at the moment when the coverage of the thn  layer has just been completed [snapshot 3t  in 

Fig. 1(b)]. The cross-sectional area is 2A Lα=  with L  being 0L  at this moment. The α  is a 

geometrical factor; / 4α π=  for circular cross-sections and 1α =  for square across-sections. For 

easy comparison with experiments, we will refer to L  as the “diameter”, even though it is 

precisely diameter only for circular cross-sections. Before the next layer is nucleated, the 

adatoms on top diffuse to the sides of nanorods, leading to lateral growth. During this period of 

lateral growth, mass conservation requires 2 2 2
00

t

eF L dt n L n Lα α α= −∫ ; eF  is the effective 

deposition rate on top of the nanorod, and t  is the time. It should be noted that this conservation 

equation is valid for mode II of nanorod growth in Fig. 1(a), and that it is different from that for 

the growth of large crystals [7-9].  
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Using the conservation equation and following the LAM, we derive the distribution 

( ) ( )5 5 5
0 0, 1 expn nf L L L L L⎡ ⎤= − −⎣ ⎦  as the fraction of nanorods on top of which nucleation has 

taken place when the diameter of nanorods is L ; details of the derivation is available in [17]. 

Here, ( ) ( ) 1 52
310n D eL n Fν α⎡ ⎤= ⎣ ⎦  and 3Dν  is the diffusion jump rate of adatoms over multiple-

layer surface steps. The nucleation probability density that the ( )th1n +  layer starts to nucleate on 

top of a nanorod of diameter L  is then ( ) ( ) ( ){ }4 5 5 5 5
0 0 0, = , = 5 expn n n np L L df L L dL L L L L L⎡ ⎤−⎣ ⎦ . 

Next, we consider the fact that not all nanorods have the same diameter 0L  at snapshot 2t  

in Fig. 1(b). Instead, if their size distribution is ( )1nS L− , the size distribution at snapshot 4t  is

( ) ( ) ( )10
,

L

n n nS L dlS l p L l−= ∫ . For a non-wetting substrate, we approximate the size distribution 

of the first layer as a delta function, ( ) ( )1 0S L Lδ= − . With this approximation, we recursively 

determine ( )nS L . Finally, we determine the peak diameter minL  as the L  that satisfies 

( ) 0ndS L dL = . For a sufficiently narrow size distribution, this peak diameter minL  represents 

the smallest diameter. When the number of layers n  is large, we obtain a closed-form expression 

( ) ( )( )
1

2 5
min 310 ln 2 D eL n Fα ν⎡ ⎤≈ ⎣ ⎦ . Since the effective deposition rate eF  is proportional to the 

nominal deposition rate F  through sineF F θ= ⋅  with θ  being the incidence angle, 

1/5
min 3( / )DL Fν∝ . 

Before using the theory, we verify it here. First, we numerically determine ( )nS L  as a 

function of the number of layers n  (effectively time); further details of the verification are 

available in [17]. As Fig. 2(a) shows, the peak diameter first increases fast then more slowly with  
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FIG. 2 (color online). (a) The theoretical 

distribution ( )nS L  for various numbers of layers 

n  in height; the inset shows a comparison of the 

numerical solution, the closed-form expression, 

and LKMC simulation results under complete 

geometrical shadowing as a function of 

1/5
3( / )D Fν . (b) LKMC simulation results under 

incomplete geometry shadowing as a function of 

1/5
3( / )D Fν ; the separation of nanorod nuclei sL  

is included for comparison, and the incidence 

angle is 85°. The inset shows nanorods from a 

LKMC simulation with random nucleation. (c) 

LKMC simulation results under incomplete 

geometry shadowing as a function of incidence 

angle, with either the same 1 sin5eF = ⋅ °  nm/s or 

the same 1F =  nm/s; the separation of nanorod 

nuclei sL  is included for comparison. 

 

time, and the distribution become very narrow as n  reaches 2000 layers. The narrow distribution 

confirms the validity of using the peak diameter as representative of the smallest diameter minL . 

Further, the numerical solution and the closed-form expression of minL  are nearly identical as 

nanorods grow to 2000 layers [Fig. 2(a) inset]. LKMC simulations using various substrate 
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temperatures or various deposition rates, while keeping other conditions unchanged, show nearly 

identical dependence of minL  on 1/5
3( / )D Fν  as the theory predicts [Fig. 2(a) inset].  

Upon verification of the theoretical formulations, we next use LKMC simulations to test 

the validity of the theory beyond complete geometrical shadowing conditions. As long as mode 

II of nanorod growth is operational, we still expect the dominance of multiple-layer surface 

steps, even if geometrical shadowing is incomplete. Indeed, the simulation results [Fig. 2(b) 

inset] show the dominance of multiple-layer surface steps. By changing 3Dν  and F  

independently, the simulation results show in Fig. 2(b) that minL  is still proportional to 

1/5
3( / )D Fν  when the incidence angle of atomic flux is 85°. 

Having verified the theory ( ) ( )( )
1

2 5
min 310 ln 2 D eL n Fα ν⎡ ⎤≈ ⎣ ⎦  and extended its 

applicability as 1/5
min 3( / )DL Fν∝  under incomplete geometrical shadowing, we now use a 

previous experiment [18] to validate it. In the experiment, Cu nanorods of ~30 nm in diameter 

grow under a deposition rate of 1 nm/s with an incidence angle of 85°; the substrate temperature 

is uncontrolled but is within 300-350 K. By increasing the deposition rate to 6 nm/s, the growth 

of nanorods transitions into the growth of a dense film. By including the theoretical separation of 

nanorod nuclei sL  [19] in Fig. 2(b), our theory explains this anomalous transition as the 

following. The crossover of minL  and sL  occurs at ~20 nm. As deposition rate increases, both 

minL  and sL  decrease. When they reach ~20 nm, sL  becomes smaller than minL , so there is no 

space for separate nanorods to exist. Because of random nucleation, some nanorods are separated 

at a smaller distance than the theoretical value sL . As a result, nanorods bridge and merge even 

if minsL L> , provided they both are still close to ~20 nm. That is, sL  makes it nearly impossible 
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to grow well separated Cu nanorods that are smaller than ~30 nm; beyond our own experiments, 

others have also reported only nanorods of ~30 nm or larger but not smaller [20,21]. The fact 

that the theory explains the anomalous experimental results serves as a validation. 

Now that the theory has been verified and validated, we use it to guide the pursuit of the 

smallest nanorods. The first insight from the theory is that sL  is the limiting factor of growing 

smaller nanorods. If we can eliminate the constraint of sL , it may become possible to grow 

smaller and well separated nanorods of diameter minL . It is possible to change sL  with minor 

impact on minL  by using substrates of different wettability or heterogeneous nucleation, or to 

change minL  with minor impact on sL by using different substrate temperatures. Putting this 

insight into action, we apply four strategies. (1) By using large incidence angles, we lower the 

effective deposition rate to promote the relationship minsL L> ; (2) by using lower substrate 

temperatures, we take the advantage of larger activation energy in minL  to promote the 

relationship minsL L> ; (3) by using substrates with heterogeneous nucleation, we make sL  

ineffective; and (4) by using highly non-wetting substrates, we increase sL  to promote minsL L> . 

Since the last three strategies are apparent, we use Fig. 2(c) to show the feasibility of only the 

first strategy. As the incidence angle becomes larger, while keeping the nominal deposition rate 

constant, minL  becomes larger but sL  becomes even larger. Indeed, the increase of incidence 

angle promotes minsL L> .  

The second insight is that a decrease of 3Dν  (by an increase of the diffusion barrier of 

adatoms over multiple-layer surface steps) can be effective to reduce the diameter of nanorods 

according to 1/5
min 3( / )DL Fν∝ . Putting this insight into action, we use quantum mechanics 
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calculations to identify a metal with a large diffusion barrier of adatoms and therefore small 3Dν . 

Our calculations show that the relevant energy barrier of adatoms diffusion down a multiple-

layer surface step in Au is 0.52 eV, much larger than the 0.40 eV in Cu or 0.12 eV in Al [14,15]; 

this barrier is in contrast to the Ehrlich-Schwoebel barrier of adatoms diffusion down a 

monolayer surface step[12,22]. With this set of data, the second insight suggests that we can 

reach an even smaller diameter for Au nanorods than for Cu nanorods. 

 
FIG. 3. Scanning electron microscopy (SEM) images of well-separated (a) Cu and (b) Au 

nanorods at an early stage; the insets with the same scale show the morphologies of substrates.  

Using the first insight from the theory, we design the growth of Cu nanorods as the 

following; with additional details available in [17]. We use a large incidence angle of 88°, a 

substrate with heterogeneous nucleation sites of SiO2, and a low substrate temperature of about 

250 K; the deposition rate is 0.1 nm/s. The experiments indeed confirm that well-separated Cu 

nanorods of ~20 nm in diameter grow [Fig. 3(a)], as the first theoretical insight suggests. This 

represents the smallest well-separated Cu nanorods that have ever been reported using PVD. 

Using both the first and the second insights from the theory, we grow Au nanorods using a large 

incidence angle of 88°,  a substrate that is highly non-wetting (3M Copper Conductive Tape 
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1182, 3M Corporation, St. Paul, MN), and a low substrate temperature of about 250 K; the 

deposition rate is also 0.1 nm/s.  The experiments indeed confirm that well-separated Au 

nanorods of ~10 nm in diameter grow [Fig. 3(b)], as the two theoretical insights suggest. In fact, 

some of the Au nanorods are as small as 7 nm in diameter. Once again, the Au nanorods of ~10 

nm in diameter are the smallest well-separated metallic nanorods that have ever been reported 

using PVD.  

As the well-separated nanorods continue to grow beyond ~800 nm in height, they start to 

form new architectures. For the case of Cu, bridging occurs but nanorods generally remain 

separated. In contrast, nearly complete merging of nanorods occurs without the heterogeneous 

nucleation sites [Fig. 4(a) inset]. For the case of Au, branching has occurred beyond ~800 nm, 

but the small diameter and the separation of nanorods both persist. In contrast, a dense columnar 

Au film grows when the substrate is a regular Si {100} substrate with native oxide [Fig. 4(b) 

inset].   

 

FIG. 4. SEM images of (a) Cu and (b) Au nanorods at a later stage when nanorods are about 

1000 nm long; the insets with the same scale show surface morphologies of nanorods when 

conventional substrates are used.  
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 In summary, we have formulated a closed-form theory of the smallest diameter of 

metallic nanorods using PVD, verified the theory using LKMC simulations and validated it using 

previous experiments. Further, using the theory-guided PVD experiments, we have realized well-

separated Cu nanorods of ~20 nm in diameter and well-separated Au nanorods of ~10 nm in 

diameter. These Au nanorods are the smallest well-separated metallic nanorods that have ever 

been reported using PVD.  

The authors acknowledge the financial support of US DoE Office of Basic Energy 

Science (DE-FG02-09ER46562), and access to user facilities at the Center for Integrated 

NanoTechnologies at Los Alamos and Sandia National Laboratories.  
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