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Abstract

The phase diagrams of MgSiO3 and MgO are studied from first-principles theory for pressures

and temperatures up to 600 GPa and 20,000 K. Through evaluation of finite-temperature Gibbs

free energies, using both DFT-GGA and hybrid exchange-correlation functionals, we find evidence

for a vast pressure-temperature regime where molten MgSiO3 decomposes into liquid SiO2 and

solid MgO, with a volume change of approximately 1.2 percent. The demixing transition is driven

by the crystallization of MgO − the reaction only occurs below the high-pressure MgO melting

curve. The predicted transition pressure at 10,000 K is in close proximity to an anomaly reported

in recent laser-driven shock experiments of MgSiO3. We also present new results for the high-

pressure melting curve of MgO and its B1-B2 solid phase transition, with a triple point at 364 GPa

and 12,000 K.

PACS numbers: 62.50.-p,02.70.-c, 61.20.Ja, 91.45.-c
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The evolution and structure of terrestrial planetary interiors depend largely on the ther-

modynamic stability of the mantle minerals that compose them [1–3]. In particular, the

phases and decomposition of magnesium silicate (MgSiO3) at the pressure (P ) and temper-

ature (T ) conditions found in the Earth’s mantle, as well as in Earth-like and Saturn-like

exoplanets, have been a subject of great interest [4–14]. Most studies to date have focused

on the crystallographic transformations of MgSiO3-perovskite and post-perovskite solids.

However, recent shock compression experiments reported discontinuous phase changes in

liquid MgSiO3 with a 6.3 ± 2.0 percent volume change [15]. While the conditions where

these changes take place lie outside the pressure-temperature range found within the Earth,

such transitions could play an important role during the giant impacts that lead to planetary

formation. They would also have serious implications for the convection mechanisms in the

primitive stages of the Earth mantle’s development, as well as geophysical processes in the

interiors of extra-solar super-Earths.

The observed anomalies in molten MgSiO3 were interpreted as a first-order liquid-liquid

phase transition (LLPT) [15]. LLPT’s are exceptionally rare in equilibrium liquids and have

only been reported for a few systems [16–19]. In all known cases, they are driven by drastic

changes in the bonding properties − metallization (except for CO2) and/or polymerization.

However, no electrical anomalies or significant changes in the nature of the chemical bonding

in liquid MgSiO3 are expected at the reported conditions (T > 8, 000 K and P > 300 GPa).

Therefore, in addition to being highly relevant for planetary science, understanding the high-

pressure phase diagram of MgSiO3 addresses the fundamental question of whether a LLPT

could exist at extreme temperatures where the importance of ion kinetics is comparable to

that of the chemical interactions.

In this Letter, we report on an investigation of liquid MgSiO3 from first-principles theory.

The problem at hand requires computing the free energies of MgSiO3 and its possible reac-

tion products. For the high temperatures of interest, entropic contributions are expected to

play an important role and must be determined with high accuracy. We have also taken spe-

cial care to assess the validity of the employed exchange-correlation approximations, which

is necessary at extreme compression [20, 21] or when comparing phases with significantly

different electronic properties. Our results confirm that liquid MgSiO3 becomes thermody-

namically unstable under compression. However, despite the excellent agreement found here

with the measured transition pressure at 10,000 K, our explanation for the instability is en-
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tirely different. In what follows, we show that liquid MgSiO3 undergoes a phase separation

into solid magnesium oxide and liquid silica.

We have performed first-principles molecular dynamics (FPMD) simulations (at constant

number of particles N , volume V , and temperature T ) of liquid and solid MgSiO3, MgO,

and SiO2 up to pressures (P ) and temperatures of 600 GPa and 20,000 K. Calculations were

carried out using finite-T density functional theory (DFT) [22] within the Perdew-Burke-

Ernzerhof [23] generalized gradient approximation (PBE-GGA) using the Vienna ab initio

Simulation Package (VASP) [24]. We used Born-Oppenheimer dynamics, a Nosé-Hoover

thermostat, and a Γ-point sampling of the Brillouin zone for all simulations. Supercells of

135 atoms were used for simulations of liquid MgSiO3, 96 atoms for liquid SiO2, and 100

atoms for liquid MgO, as well as 64 and 128-atom supercells for simulations of the B1 and

B2 solid phases of MgO, respectively. Changes to the free energies were negligible when

using up to 216 and 256-atom supercells for the B1 solid and liquid phases of MgO, while

also maintaining good agreement with pair correlation functions given in ref. 25.

For each system, convergence with respect to k-point sampling was checked using up to

a 4×4×4 grid on FPMD snapshots to ensure the desired level of accuracy (few meV/atom).

At each P and T , simulations were equilibrated for 1-2 ps and run for an additional 5-10 ps

(necessary for a well-converged vibrational spectra) with a 0.75 fs time-step. We employed

an 8-electron projector augmented wave (PAW) pseudopotential (PP) with a 2.00 Bohr core

radius for Mg atoms, a 4-electron PAW PP with a 1.50 core radius for Si atoms, and a

6-electron PAW PP with a 1.10 core radius for O atoms. All calculations were performed

with an 875 eV plane-wave cut-off energy.

Finite-T Gibbs free energies were computed using ensemble (time) averages of energies,

pressures, and temperatures from FPMD simulations. Entropies were calculated using vi-

brational spectra calculated via Fourier transform of the velocity auto-correlation functions

(VACF) obtained from simulation trajectories. For liquid phases, this was done following

the method prescribed in ref. 26 where the vibrational spectrum is decomposed into gas and

solid-like parts. This method has been used to successfully predict demixing transitions in

dense liquid alloys, accurate to within 1-2 % of thermodynamic integration free energies [27].

The Gibbs free energy of mixing is calculated as ∆Gmix = GMgSiO3−(2/5)GMgO−(3/5)GSiO2 .

Here GX is the free energy per atom of species X, where X is MgSiO3, MgO, or SiO2.

It is well known that standard DFT functionals possess an incorrect bias toward metal-
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lic systems. Given that we are interested in transitions between metallic (the liquids) and

insulating (the solids) mineral phases, we have included corrections for each phase of each

material considered for a variety of P -T conditions using the Heyd-Scuseria-Ernzerhof (HSE)

hybrid functional [28]. This was done at the level of thermodynamic perturbation by recalcu-

lating the energies of atomic configurations obtained from FPMD using the HSE functional.

The resulting corrections to the free energies of mixing are on the order of tens of meV/atom.

It is important to note that the hybrid functional does not qualitatively affect our conclu-

sions, but rather results in small changes to transition pressures and temperatures. Similarly,

tests employing a van der Waals density functional (vdW-DF) [29] led to fairly small changes

in free energies of mixing (< 10 meV/atom), which have been neglected here.

The properties of molten MgSiO3, are studied along the 10,000 and 16,000 K isotherms for

pressures up to 600 GPa. An exhaustive analysis of static and dynamic structural properties

reveals no notable or discontinuous changes with pressure. Furthermore, the pressures and

energies obtained from simulation averages are smooth functions of the V . Should there

be a volume change of 6.3 % as reported in ref. 15, one would expect a distinct plateau in

P (V ), which we do not see in our data.

The decomposition reactions of MgSiO3 that we consider, namely:

MgSiO3

∣∣∣∣
liq

→ SiO2

∣∣∣∣
liq

+ MgO

∣∣∣∣
liq

(1)

MgSiO3

∣∣∣∣
liq

→ SiO2

∣∣∣∣
liq

+ MgO

∣∣∣∣
sol

, (2)

require knowledge of the Gibbs free energies and phase boundaries of MgO and SiO2. While

SiO2 is well known to be liquid under the conditions of interest for these reactions [36],

MgO has solid-liquid and solid-solid phase lines in close proximity [32]. Therefore, in order

to properly evaluate the Gibbs free energy of mixing for MgSiO3, we have determined the

high-pressure phase boundaries between liquid MgO and its B1 (NaCl-type) and B2 (CsCl-

type) solid phases using their finite-T Gibbs free energies. These results are summarized

in a new MgO phase diagram, presented in Fig. 1. The free energies of liquid MgO and

its B1 and B2 solid phases are shown along the 10,000 K isotherm in Fig. 1 (inset). We

have presented results from PBE-GGA, as well as with corrections to the energies using the

HSE hybrid functional, as discussed above. Our melting temperatures are slightly higher

than those previously predicted [31–33]. To our knowledge, these are the first calculations

of the MgO melting curve that employ a hybrid functional, which is partially responsible
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FIG. 1. High-pressure phase diagram of MgO revealed by first-principles free energy calculations.

Red triangles show our melting points for B1 and B2 phases obtained with (downward) and without

(upward) HSE corrections to the free energies. Our predicted B1-B2 transition points are given

by red squares. Short black lines underneath our data represent Clausius-Clapeyron slopes. Thick

blue lines are Kechin fits to our HSE-corrected data [30], which give rise to a triple point at 364 GPa

and 12,000 K. Previous theoretical predictions of B1 (diamonds) and B2 (circle) melting points

are also shown [31, 32]. Black dashed lines indicate theorized high-pressure melting curves [32, 33]

as well as B1-B2 phase boundaries [32, 34, 35]. Inset: Gibbs free energies for MgO phases relative

to the B1 phase along the 10,000 K isotherm with (solid lines) and without (dashed lines) HSE

corrections.

for our higher melting temperatures; regular DFT functionals incorrectly favor the metallic

fluid over the insulating B1 and B2 solids. The B1-B2 transition found here at 405 GPa and

10,000 K, as well as the zero-temperature transition at 500 GPa are in good agreement with

previous work [32, 34, 35]. The Clausius-Clapeyron slopes for our B1-liquid transition points

are 61.0 K/GPa at 6,000 K, 14.0 K/GPa at 10,000 K, and 8.9 K/GPa at 12,000 K, while the

slope at the B2-liquid transition is 12.3 K/GPa at 14,000 K and the B1-B2 transition slope is

-30.4 K/GPa at 10,000 K. By fitting the melting curves and the solid-solid phase line with a
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FIG. 2. Gibbs free energies of mixing along the (a) 10,000 and (b) 16,000 K isotherms computed

using MgO liquid (blue) and MgO solid B1 (red) with (squares) and without (circles) HSE correc-

tions. Anomalies measured in shocked MgSiO3 are given by black crosses. (c) Enthalpy and entropy

(diamonds) contributions to the Gibbs free energies of mixing at 10,000 K. (d) Total entropies of

the various phases considered at 10,000 K.

Kechin equation [37], we obtain the B1-B2-liquid triple point at 364 GPa and 12,000 K. An

estimate for the Clausius-Clapeyron slope at the triple point yields 22.9 K/GPa, consistent

with 23.4 K/GPa obtained through direct differentiation of our B2-liquid Kechin equation-

fitted boundary.

Having determined the high-pressure MgO phase diagram we proceeded to compute the

Gibbs free energies of mixing associated with reactions (1) and (2). Fig. 2 shows these results

for the 10,000 and 16,000 K isotherms with and without HSE corrections. At both 10,000

and 16,000 K we find that reaction (1) is not exothermal. However, calculations at 10,000 K

indicate that demixing reaction (2) must occur above 303 GPa, and it is the crystallization
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of MgO taking place at lower temperatures that drives the phase separation process in liquid

MgSiO3. In Fig. 2(c), we show the enthalpy and entropy contributions to the Gibbs free

energies of mixing at 10,000 K. As expected, the presence of solid MgO in reaction (2) results

in a largely negative enthalpy of mixing, but also contributes considerably less to the entropy

of the products, as seen in Fig. 2(d). Upon compression, the entropy of mixing continues

to increase gradually, while the enthalpy of mixing remains relatively flat. At 303 GPa the

two terms cross, giving rise to the demixing of fluid MgSiO3 via reaction (2). Fig. 2(c) also

shows the enthalpy and entropy of mixing for reaction (1). Again, the enthalpy of mixing

is relatively flat (this time, positive) over the entire pressure range, while the entropy of

mixing is nearly zero and rises too slowly to induce the demixing process given by (1) at

these pressures. The total entropies for each phase at 10,000 K are shown in Fig. 2(d).

As expected, solid B1 MgO possesses lower entropy than the liquids, however, its entropy

decreases at the slowest rate with pressure; this is directly responsible for the demixing of

molten MgSiO3.

To determine the phase line associated with demixing reaction (2), we performed simu-

lations at 500 GPa. At this pressure, our free energy calculations indicate liquid MgSiO3

becomes thermodynamically unstable below 12,000 K, where it decomposes into liquid SiO2

and solid B2 MgO. Our results are summarized in a new high-pressure liquid phase diagram

for MgSiO3, shown in Fig. 3. We have highlighted a large region in P -T space spanning

hundreds of gigapascals and thousands of degrees Kelvin between the MgSiO3 and MgO

melting curves, where our calculations indicate that molten MgSiO3 decomposes into solid

MgO and liquid SiO2. As before, our transition points are shown with and without HSE

corrections to the energies to account for any metallic bias. The Clausius-Clapeyron slopes

for the demixing reactions involving the B1 and B2 phases of MgO are 11.1 and 18.9 K/GPa,

respectively, fairly consistent with the locations of each point relative to one another.

Given how close our 10,000 K transition pressure is to the anomaly measured in ref. 15,

we propose that the experimental findings at these conditions are indeed a signature of

the phase separation predicted here. However, our demixing transition near 400 GPa takes

place at much lower temperature than the experimental anomaly. In order to understand the

significance of this disagreement, we have considered the amount of error in our calculations

needed to give rise to a demixing reaction that coincides with the anomaly measured at

16,000 K and 390 GPa. Based on the data presented in Fig. 2(b), we estimate that an
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FIG. 3. Proposed high-pressure phase diagram of liquid MgSiO3. The shaded blue region shows

the P -T region where liquid MgSiO3 phase separates into solid MgO and liquid SiO2. Demixing

transition points were calculated with (squares) and without (diamonds) HSE energy corrections.

The short black lines underneath our data represent Clausius-Clapeyron slopes. Recent shock

measurements are shown with shaded grey regions [15]. The blue square indicates the demixing

transition pressure for reaction (1) assuming a systematic 200 meV/atom error in our Gibbs free

energy calculations, equivalent to approximately 1% error in the evaluation of our total entropies.

The blue arrow forms the corresponding demixing phase boundary (guide to the eye) taking into

account such a systematic error. Previous theoretical [33, 38] and experimental [39, 40] results

for the MgSiO3 melting curve are shown by black dashed lines and black dots, respectively. MgO

phase boundaries presented in Fig. 1 are given by solid black lines for comparison.

error of approximately 200 meV/atom in ∆Gmix would be required. The biggest source of

uncertainty in our calculations is the entropy. A 200 meV/atom error in ∆Gmix translates to

about 1% of the total entropy at 16,000 K. A corresponding 1% systematic error in the total

entropies at 10,000 K would shift the demixing transition by approximately 105 meV/atom.

If we accept such a systematic error, the 10,000 K demixing pressure would be lowered
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to 215 GPa, indicated by the blue arrowhead in Fig. 3. The curvature of the blue arrow

between the hypothetical 16,000 and 10,000 K transition points is a guide to the eye, meant

to represent a contour of 1% error in total entropy. While the authors appreciate that such

large qualitative differences may arise from small uncertainties, it is virtually unavoidable at

these temperatures; free energies checked using state-of-the-art thermodynamic integration

methods at one P -T point yield results within 1-2% of the method employed in this work.

However, because we do not observe significant variations in the liquid structure for the

P -T conditions of interest, any computational errors would likely be systematic, making it

difficult to justify the experimental observations at both temperatures simultaneously.

The results presented here provide a broad characterization of the MgO and MgSiO3

phase diagrams up to 600 GPa and 20,000 K. Our first-principles simulations of liquid

MgSiO3 show no rapid or discontinuous changes in its structural, electronic, or thermody-

namic properties over the entire range of experimental P -T conditions. Instead, we predict

an expansive region between MgSiO3 and MgO melting curves, in which molten MgSiO3

decomposes into solid MgO and liquid SiO2. Similar phase separation of MgSiO3 into MgO

and SiO2 has been previously predicted in its solid phases, albeit at considerably higher

pressures [11]. Moreover, a decomposition to MgSi2O5 and MgO has also been predicted

for solid MgSiO3 [13] between ∼ 1-2 terapascals. We have also considered these products in

the fluid and find their free energy to be competitive for the P -T conditions considered, but

never the lowest (see Supplementary Material). The demixing transition predicted here may

have played a significant role in the primitive mantle, contributing to the large amounts of

MgO and SiO2 present today. An accurate description of these mantle minerals at high pres-

sures and temperatures is of the utmost importance in understanding terrestrial planetary

formation as well as the evolution of their interiors.
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