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Dynamical suppression of unwanted transitions in multistate quantum systems

Genko T. Genov and Nikolay V. Vitanov
Department of Physics, Sofia University, 5 James Bourchier blvd, 1164 Sofia, Bulgaria

We propose a method to suppress unwanted transition channels and achieve perfect population
transfer in multistate quantum systems by using composite pulse sequences. Unwanted transition
paths may be present due to imperfect light polarization, misalignment of the quantization axis,
spatial inhomogeneity of the trapping fields, off-resonant couplings, etc., or they may be merely
unavoidable, e.g., due to perturbing excitations in molecules and solids. Compensation of separate
or simultaneous deviations in polarization, pulse area, and detuning is demonstrated, even when
these deviations are unknown, in three-state V and Ξ (ladder) systems and in a four-state Y system.

PACS numbers: 32.80.Qk, 32.80.Xx, 82.56.Jn, 42.50.Dv

Introduction. Experiments in many fields of quan-
tum physics require well-defined quantum states and
well-defined interactions. For example, the basic ingre-
dient of the quantum computer is a well-defined qubit
— a two-state quantum system. Real quantum systems,
however, possess many states and special care is needed
to isolate just two of them. In real and artificial atoms
this is usually done with polarized laser light, carefully
aligned with the quantization axis. However, unwanted
transition channels may still be present, which reduce the
fidelity of the operations. For example, when an ultra-
cold atomic ensemble held in an optical dipole trap is
addressed by right circularly polarized (σ+) light, many
atoms often “see” an admixture of σ+ and σ− light (i.e.,
elliptical polarization) since not all of them are exactly in
the focus of the laser fields. Unwanted transitions may
be present also due to imperfect polarization or align-
ment, off-resonant couplings, perturbing excitations in
molecules and solids, etc.

In this Letter, we propose a simple and efficient tech-
nique for automatic compensation of such errors, even
without knowing their magnitudes, which uses compos-
ite pulse sequences to dynamically suppress unwanted
transitions, while simultaneously controlling the qubit
in a robust way. We illustrate the technique in three-
and four-state quantum systems forming linkages remi-
niscent of the letters V, Ξ and Y, as shown in Fig. 1; the
technique is, however, applicable also to more complex
linkage patterns. We demonstrate compensation of both
independent and simultaneous variations in polarization,
pulse area, and single-photon detuning (e.g., due to Stark
shifts). The technique can also be used for compensation
of unwanted two-photon and multi-photon detuning.

Composite pulse sequences have been used for several
decades in nuclear magnetic resonance [1, 2], and since
recently, in quantum information processing [3–6] and
quantum optics [7–10] as a versatile control tool for quan-
tum systems. Some of the basic ideas have been devel-
oped even earlier, in research on achromatic polarization
retarders [11, 12]. While composite pulses have been used
mainly for two-state quantum systems, there are also
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FIG. 1: (color online) V, Ξ(ladder) and Y systems.

studies in three-state and multistate systems [10, 13].
A composite pulse is a sequence of pulses with well

defined relative phases, which are used as control param-
eters in order to compensate imperfections in the excita-
tion profile produced by a single pulse, or to shape the
profile in a desired manner. The imperfections may be
caused by an imprecise pulse area, undesirable frequency
offset, or unwanted frequency chirp. Here we use the tool-
box of composite pulses to design recipes for suppression
of unwanted transition paths, which may turn a qubit or
a simple three-state ladder system into a complex tree of
states, with an unavoidable loss of efficiency.
V and Ξ systems. The dynamics of a coherently

driven V system (Fig. 1, left), obeys the Schrödinger
equation, i~∂tc(t) = H(t)c(t), where the vector c(t) =
[c1(t), c2(t), c3(t)]

T contains the probability amplitudes of
the three states. The Hamiltonian in the rotating-wave
approximation (RWA) reads

HV (t) = (~/2)∆(Π11 −Π22 −Π33) + (~/2)

×
[
Ω12(t)e

iφ12Π12 +Ω13(t)e
iφ13Π13 + h.c.

]
, (1)

where ∆ = ω0 − ω is the detuning between the laser
carrier frequency ω and the Bohr transition frequency
ω0, and Πjk = |j〉〈k|. The magnitudes of the Rabi fre-
quencies are Ωjk(t) = |djk · E(t)|/~, where E(t) is the
envelope of the laser electric field and djk is the transi-
tion dipole moment of the respective transition j ↔ k;
the phases of the Rabi frequencies are φ12 and φ13. We
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assume that the two Rabi frequencies have the same time
dependence f(t) and we introduce the root-mean-square
(rms) peak Rabi frequency Ω and the mixing angle θ via
Ω12(t) = Ωf(t) cos θ and Ω13(t) = Ωf(t) sin θ. We as-
sume hereafter that the composite sequence duration is
shorter than the system’s decoherence times.

An important example of a V system is the transition
between the magnetic sublevel m = 0 (state |1〉) of a
ground level with an angular momentum j = 0 or 1, and
the magnetic sublevels m = 1 (state |2〉) and m = −1
(state |3〉) of an upper level with an angular momentum
j = 1 driven by an elliptically polarized laser pulse. The
latter is a superposition of two circularly polarized σ+

and σ− pulses [14]: then Ω12 = Ω+ and Ω13 = Ω−,
the angle of rotation of the polarization ellipse is φ =
(φ12−φ13)/2 and the ellipticity is ε = cos 2θ. The values
θ = 0, π/4, π/2 (ε = 1, 0,−1) correspond, respectively, to
σ+, linear and σ− polarizations. The dynamics of the V
system is similar to that of the Ξ system (Fig. 1, center),
since the Hamiltonian of the latter is given by Eq. (1) by
interchanging states |1〉 and |2〉.

Our objective is to transfer all population from state
|1〉 to state |2〉 and completely suppress the excitation
path |1〉 ↔ |3〉 by using the phases φ1j as control tool
parameters. In the above example of magnetic sublevels,
this can be achieved by a σ+ polarized π pulse. However,
if the polarization is not perfectly σ+, then the atom will
“see” some σ− polarized light and the unwanted chan-
nel |1〉 ↔ |3〉 will open up. We show below that com-
posite pulses can compensate such an admixture of un-
wanted polarization, even without knowing its amount,
and achieve perfect transfer |1〉 → |2〉.

The V system described by the Hamiltonian (1) can be
transformed by the Morris-Shore transformation [15] into
a decoupled state |d〉 = −e−iφ13 sin θ|2〉 + e−iφ12 cos θ|3〉
and a two-state system composed of state |1〉 and a cou-
pled state |c〉 = eiφ12 cos θ|2〉+eiφ13 sin θ|3〉 driven by the
following Hamiltonian

H̃2(t) = (~/2){∆(Π11 −Πcc) + [Ωf(t)Π1c + h.c.]}. (2)

We note that no population is trapped in the decoupled
state permanently since its composition changes for each
constituent pulse because the phases φ12 and φ13 change.
The corresponding propagator can be expressed in terms
of the complex Cayley-Klein parameters a and b (with
|a|2 + |b|2 = 1) as [16]

Ũ =

[
a b
−b⋆ a⋆

]
. (3)

For resonant pulses (∆ = 0), with rms area A =∫ tf

ti
Ωf(t)dt, the Cayley-Klein parameters are indepen-

dent of the pulse shape: a = cosA/2 and b = −i sinA/2.
For ∆ 6= 0, a and b depend on the pulse shape.
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FIG. 2: (color online) Transition probabilities P1→2 (solid)
and P1→3 (dashed) vs the mixing angle θ for a single res-
onant pulse with rms area π and for composite sequences
of N pulses (each with rms area π). Upper frame: V sys-
tem with phases φ12 = (0, 2/3, 0)π and φ13 = (0, 1, 1/3)π
for 3 pulses, and φ12 = (0, 1.411, 0.249,−0.432,−0.935)π and
φ13 = (0, 0.454,−0.632, 0.14,−0.514)π for 5 pulses. Lower

frame: Ξ system with phases φ12 = (0, 2/3, 1/6)π and φ23 =
(0,−2/3, 1/6)π for 3 pulses, and φ12 = (0,−4,−1, 7,−4)π/10
and φ23 = (0, 4, 3,−5, 0)π/10 for 5 pulses. The (3e) curves
in both frames show the transition probabilities for 3 pulses
when their phases experience random errors with a Gaussian
distribution with a standard deviation of 0.05π.

The propagator in the original basis reads [10, 16, 17]

U(φ) =



a beiφ12C beiφ13S
−b⋆ e−iφ12C a⋆C2 + ζS2 (a⋆ − ζ) e−2iφSC
−b⋆ e−iφ13S (a⋆ − ζ) e2iφSC ζC2 + a⋆S2


 ,

(4)

where S = sin θ, C = cos θ and ζ = exp[i
∫ tf

ti
∆(t)dt/2].

Complete population transfer |1〉 → |2〉 with a single
pulse implies |U21| = 1, i.e. a = 0, |b| = 1, θ = 0.
However, if θ 6= 0, then the coupling between states |1〉
and |3〉 is nonzero and some population is unavoidably
lost from state |2〉: transferred to |3〉 or left in |1〉.
Deviation of θ from 0 can be compensated to an ar-

bitrary order by composite pulses. The propagator of a
composite sequence of n pulses reads

U(n) = U(φn) · · ·U(φ2)U(φ1), (5)

where φk = (φ
(k)
12 , φ

(k)
13 ) are the phase shifts of the k-th

pulse in the sequence with U(φk) given by Eq. (4). The

phases φ
(k)
1j are free parameters. We determine them by

setting P1→2 = |U
(n)
21 |

2 = 1 for θ = 0 and nullifying the
coefficients in the Taylor expansion of P1→2 vs θ to the
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FIG. 3: (color online) Transition probability P1→2 in a V
system. Upper frames: P1→2 vs the mixing angle θ and the
rms pulse area A for a single resonant pulse (upper left) and
a composite sequence of three resonant pulses (upper right)
with phases φ12 = (0, 2/3, 0)π and φ13 = (0, 1, 1/3)π. Lower

frames: P1→2 vs the mixing angle θ and the single-photon
detuning ∆ for a single rectangular pulse of duration T and
rms area A = π (lower left) and a composite sequence of three
rectangular pulses, each with duration T and rms area π, and
phases φ12 = (0, 1/3, 0)π and φ13 = (0, 2/3, 0)π (lower right).

highest possible order. Since the global phase is irrel-
evant, we take φ1 = 0. This compensation is demon-
strated in Fig. 2 (upper frame). For longer sequences
(larger n), the transition profile P1→2(θ) broadens and
the unwanted transition |1〉 → |3〉 is suppressed for a
larger range of θ. Remarkably, for sufficiently long com-
posite sequences, the transition |1〉 → |3〉 can be sup-
pressed even if its coupling is larger than that of the
transition |1〉 → |2〉, i.e. in the range θ > π/4. Similarly,
Fig. 2 (lower frame) shows suppression of the unwanted
transition |2〉 → |3〉 in the Ξ system of Fig. 1 (center).
The (3e) curves in Fig. 2 demonstrate the relative stabil-
ity of results with respect to random errors in the phases.
Next, we have designed composite sequences which

compensate simultaneous deviations in the mixing angle
θ from 0 and the rms pulse area A from π and (Fig. 3,
top frames), and in the mixing angle θ from 0 and the
single-photon detuning ∆ from resonance (Fig. 3, bottom
frames). In order to find the composite phases we use the
Taylor expansion of P1→2 with respect to both θ and A
(or ∆), and annul the coefficients of as many successive
terms as possible, while requiring also P1→2 = 1 for θ = 0
and A = π (or ∆ = 0). Similarly, simultaneous double
compensation can also be done in the Ξ system. We note
that even a triple compensation — vs θ, A and ∆ — can
be achieved in this manner; it is, however, more difficult

to illustrate it.
Y system. The method for suppression of unwanted

transitions is readily extended to more complex systems.
Here we describe an extension of the V and Ξ systems
to a Y-shaped system (Fig. 1, right). This system can
arise from a three-state ladder due to control tools im-
perfections, like a two-state system is turned into a V or
Ξ system. An example is found in coherent excitation of
Rydberg states, e.g., in a cloud of 87Rb atoms [18]. Ad-
ditionally, the Y-system has the same coupling pattern
as the well-known tripod system, in which three lower
states are coupled to each other via two-photon transi-
tions through a single upper state; this system is very
important in applications using geometric phases [19].
The RWA Hamiltonian of the Y system reads

HY (t) = HV (t)− (~/2)∆Π00

+ (~/2)
[
Ω01(t)e

iφ01Π01 + h.c.
]
, (6)

where HV (t) is the Hamiltonian (1) of the V system.
The Rabi frequency Ω01(t) of the additional transition
|0〉 ↔ |1〉, with phase φ01 (which provides an additional
control parameter), should share the same time depen-
dence f(t) as the other two Rabi frequencies. In ad-
dition to the mixing angle θ in the V system, we in-
troduce a second mixing angle ξ: Ω01(t) = Ω sin ξf(t),
Ω12(t) = Ω cos ξ cos θf(t), and Ω13(t) = Ω cos ξ sin θf(t),
where now Ωf(t) =

√
Ω01(t)2 +Ω12(t)2 +Ω13(t)2. Here-

after we take ξ = π/4, i.e., Ω01(t)
2 = Ω12(t)

2 + Ω13(t)
2.

The couplings in the Y system in each interaction step
can be caused by the simultaneous application of pairs
of pulses from two lasers, one on the lower transition
|0〉 → |1〉 and another (elliptically polarized) on the up-
per V system |3〉 ← |1〉 → |2〉. The objective now is to
transfer the population from state |0〉 to state |2〉 along
the path |0〉 → |1〉 → |2〉, while suppressing the transition
path |1〉 → |3〉. Mathematically, this requires |U20|

2 = 1.
As in the V system, because the couplings share the

same time dependence f(t) and the Y system is on two-
photon resonance, it can be transformed by the MS trans-
formation into a set of two decoupled states and a two-
state system. This allows us to obtain an exact ana-
lytic expression for the propagator in the original basis
in terms of the Cayley-Klein parameters of the MS two-
state system, similar to the one of Eq. (3) [10, 15–17].
The propagator U for the k-th pulse pair depends now

on three phases: φk = (φ
(k)
01 , φ

(k)
12 , φ

(k)
13 ).

Several conditions must be satisfied to achieve the de-
sired transfer |0〉 → |2〉. When the mixing angle is θ = 0
(Ω13 = 0), this is achieved by a pair of simultaneous reso-

nant pulses with rms area A =
∫ tf

ti
Ωf(t)dt = 2π [16]. As

in the V system, unknown deviations in the interaction
parameters can be compensated by a composite sequence
of pulses. The propagator of a sequence of n pulse pairs is
given by Eq. (5). Composite sequences are constructed
in the same manner as for the V system: we expand
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FIG. 4: (color online) Transition probabilities P0→2 (solid)
and P0→3 (dashed) in a Y system vs the mixing angle θ
for a single pulse pair with rms area 2π, and for compos-
ite sequences of two and six pulse pairs (each with rms area
A = π), with phases: φ01 = φ12 = (0, 0) and φ13 = (0, 1)π for
two pairs, and φ01 = (0, 0,−0.181,−0.181,−0.033,−0.033)π,
φ12 = (0, 0,−0.517,−0.517,−0.398,−0.398)π, and φ13 =
(0, 0.562, 0.026,−1.554, 0.393, 0.238)π for six pairs. The (2d)
curve shows the transition probabilities for the two pulse pairs
when there is a random time delay of the |0〉 → |1〉 coupling,
i.e. Ω01(t) → Ω01(t+ τ ), where τ has a Gaussian distribution
with a standard deviation of 0.1T , where A(T ) = π.

P0→2 = |U
(n)
20 |

2 in a Taylor series vs the relevant param-
eters and annul as many terms (in ascending order) as
possible. Compensation vs the mixing angle θ is demon-
strated in Fig. 4 for sequences of 2 and 6 pulse pairs; its
relative stability to random time delays in the |0〉 → |1〉
coupling is also shown there. Simultaneous compensa-
tion of deviations in both the mixing angle θ and the
rms pulse area A is shown in Fig. 5 (upper frames), and
in the mixing angle θ and the single-photon detuning ∆
in Fig. 5 (lower frames) for sequences of 3 pulse pairs.

Discussion and Conclusion. Besides the proposed
composite pulses technique, we note that other methods
for suppressing unwanted transitions exist, e.g. dynami-
cal decoupling for suppression of decoherence [20], which
has been shown to be equivalent to the quantum Zeno
effect [21] and extended to dynamically error-corrected
gates (DCGs) [22, 23]. Our work differs from this ap-
proach in important details. “Bang-bang” decoupling
keeps the system in a desired subspace by “strongly” cou-
pling the qubit to the environment [21], i.e. by effectively
projecting the total system onto the desired subspace.
On the contrary, our approach relies on destructive in-
terference of errors and it allows us to cancel unwanted
couplings of the same order of magnitude as the desired
ones, while DCGs can cancel perturbative errors.

We also note that examples of selective excitation by
pulse trains have been demonstrated before [24–28]. The
concept of our technique differs substantially from these
because it allows for selective excitation to a desired
state, and suppression of excitation to unwanted states
when they are degenerate, i.e. we can eliminate reso-

nantly coupled states, even without knowing how large
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FIG. 5: (color online) Transition probability P0→2 for a Y
system. Upper frames: P0→2 vs the mixing angle θ and
the rms pulse area A for a single resonant pulse pair (up-
per left) and a composite sequence of three resonant pulse
pairs (upper right) with phases φ01 = (0, 1,−1/3)π, φ12 =
(0,−2/3, 1/3)π, and φ13 = (0, 1, 0)π. Lower frames: P0→2

vs the mixing angle θ and the single-photon detuning ∆ for
a single pair of rectangular pulses with rms area A = 2π
(lower left) and a composite sequence of three pairs of rectan-
gular pulses, each with rms area 2π, and phases φ01 = φ12 =
(0, 2/3, 0)π and φ13 = (0, 1, 0)π.

the coupling to them is. The main reason for this advan-
tage is that our technique relies on the differences in the
phases of the unknown target and unwanted couplings.

The proposed technique is a simple and efficient
method for robust population transfer and suppression
of unwanted transition channels in multistate quantum
systems. We have demonstrated it for three-state V and
Ξ systems and four-state Y systems, but it can readily be
adapted to more complex systems. Unwanted transition
channels may be merely unavoidable (e.g. due to off-
resonant couplings), or can be activated, for instance, by
deviations in light polarization or geometric reasons. By
suitably choosing the phases of the constituent pulses, the
unwanted transitions can be suppressed with very high
fidelity, while compensation of deviations in laser polar-
izations, intensities and detunings can be done simultane-
ously. The accuracy, the flexibility and the simplicity of
the proposed technique make it a potentially important
tool in applications requiring high control fidelity, such
as quantum information processing and quantum optics.

This work is supported by the Bulgarian NSF grants
D002-90/08 and DMU-03/103. We thank Daniel Com-
parat for stimulating discussions.
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