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We investigate quantum control of a single atom in a tightly focussed optical tweezer trap. We
show that inevitable spatially varying polarization gives rise to significant internal-state decoherence,
but that this effect can be mitigated by an appropriately chosen magnetic bias field. This enables
Raman sideband cooling of a single atom close to its three-dimensional ground state (vibrational
quantum numbers n̄x = n̄y = 0.01, n̄z = 8) even for a trap beam waist as small as w = 900 nm. The
small atomic wavepacket with δx = δy = 24 nm and δz = 270 nm represents a promising starting
point for future hybrid quantum systems where atoms are placed in close proximity to surfaces.

Single atoms in “optical tweezer” traps [1] are a
promising resource for various applications in quantum
science and engineering. They can be individually moved
[2], manipulated [3, 4], read-out [5, 6], and used to imple-
ment quantum gates [7, 8], in a manner similar to trapped
ions. At the same time, they may be strongly coupled to
photonic [9, 10], plasmonic [11], or other solid-state sys-
tems [12–14], opening a new frontier for the realization of
quantum networks and hybrid quantum systems. These
intriguing applications require trapping single ultra-cold
atoms near surfaces at distances well below an optical
wavelength. While this is challenging for ions [15], and
magnetically trapped atoms [12, 16], it is achievable with
neutral atoms in optical dipole traps.

An optical tweezer can be efficiently loaded with a sin-
gle atom from an optical molasses by making use of a
light-induced two-body loss process (collisional blockade)
[1, 17]. The temperature of an atom loaded in this way
is in the range of 30 − 200µK [3, 4, 7, 8, 10, 18, 19],
at which point the atom has a characteristic root-mean-
square (rms) spatial extent of δr ≈ 200 nm and δz ≈ 1µm
in the radial and axial directions, respectively. This spa-
tial spread is an impediment in several current exper-
iments [7, 20], while the elevated temperature reduces
the coherence time [3, 4, 7, 8, 19]. Moreover, interfac-
ing the atom to the near field of a solid-state structure
requires much stronger confinement, as in this case the
atom must be localized on the scale of a reduced reso-
nance wavelength λ/2π = 120 nm (for Rb).

These applications require significant improvements in
laser cooling and coherent manipulation. Raman side-
band cooling is a powerful technique to control atomic
motion, as was demonstrated previously for ions and
atomic ensembles in larger traps [21–25]. Coherent ra-
man transitions between two stable ground states that
change the atom’s vibrational level can be used to re-
move energy, combined with an optical pumping process
to remove entropy and complete the cooling cycle (Fig.
1a).

However, in very tightly confining traps with beam
waist w ∼ λ, polarization effects associated with the

breakdown of the paraxial approximation can strongly
impede coherent manipulation and cooling. Such tightly
focussed beams exhibit a longitudinal polarization com-
ponent, which even for linearly polarized input fields
results in spatially varying elliptic polarization [26–29].
The corresponding atomic-state-dependent trapping po-
tentials reduce atomic coherence, induce force fluctua-
tions, and impair cooling [30]. These effects are present
not only in optical tweezers, but also at sub-wavelength
distances from dielectric boundaries [10, 31], and in pro-
jected optical lattices to be used for many-body quantum
simulation [32].

In this Letter, we present a detailed study of the longi-
tudinal polarization component of a dipole trap formed
by a high-numerical-aperture lens, demonstrate how the
associated effect on a trapped atom can be partially
compensated using a properly oriented magnetic bias
field, and apply these results to perform Raman side-
band cooling of a single atom. After cooling, the atom
is in the ground state along the two radial directions
(n̄r = 0.01+0.06

−0.01), and occupies just a few quantum states
(n̄a = 8.1(8)) in the axial trap direction. The corre-
sponding rms size of the atomic wavepacket is given by
the ground state length of δr = 24 nm in the radial di-
rections, and a thermal extent δz = 270 nm in the axial
direction. This represents a hundred-fold reduction in
spatial volume, and a reduction by 104 in phase-space
volume, over the starting conditions.

The longitudinal polarization component can be un-
derstood in the framework of ray optics (see Figure 1b).
Light entering a lens consists of parallel rays with trans-
verse linear polarization. Upon refraction the polariza-
tion of each ray must also deflect to remain transverse
to the ray [26]. In the diffraction-limited volume around
the focus, all rays interfere and the resulting field is ellip-
tically polarized. Following Fig. 1b, two features emerge
near the focus: the polarization vector is rotating in the
plane set by the incident polarization vector and the op-
tical axis, and the sense of this rotation is opposite above
and below the optical axis.

For light that is far detuned compared to the excited-
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FIG. 1. (a) Relevant levels and transitions in 87Rb. The eigenstates of the harmonic potential for the ground state are indicated
with dashed lines. Atomic levels are defined in the |F,mF 〉 basis. See text for beam orientations and polarizations. (b) The
origin of elliptical polarization near the focus (see text). (c) Cut through the focal plane for α = 0.43. Contour lines show

C̃x, which is Cx scaled to the local intensity |E(~r)|2/|E(~rmax)|2. Background shading shows Gaussian intensity profile for
comparison. (d) Dephasing rate between the states |1〉 and |2〉 as a function of bias field, with λT = 815 nm. The improvement
at large bias fields is due to suppression of the polarization gradient. Fit is to model described in text: η0 +ηcirc are background
dephasing rates from the finite detuning and slight elliptical polarization of the dipole trap; ηpg arises from the longitudinal
polarization. Inset: Ramsey measurement of dephasing rate between |1〉 and |2〉 at Bz = 10.5 G.

state hyperfine structure, the vector light shift for alkali
atoms in the ground state is [33, 34]:

U(r) = −U0(r)
δ2 − δ1
δ2 + 2δ1

C(r) · gF F̂ (1)

where U0(r) is the scalar dipole trap potential, δ1 and
δ2 are the detunings from the D1 and D2 lines, respec-
tively, ε(r) is the local (unit norm) polarization vec-
tor, F̂ is the total angular momentum operator and
gF = [F (F + 1)− I(I + 1) + J(J + 1)] /F (F + 1). The
vector C = Im [ε(r)× ε∗(r)] quantifies the direction and
degree of ellipticity (with magnitude |C| = 1 for circu-
larly polarized light; 0 for linear polarization). Using
the vector Debye integral [26], we have numerically com-
puted the polarization near the dipole trap focus (Fig.
1c). The most important term is the polarization gradi-
ent dCx/dy. For a lens with numerical aperture α, the
maximum gradient, occurring at the beam focus, is well
approximated by 3.1α sinα/λ for uniform illumination of
the lens aperture, and 2.6α sinα/λ for illumination by a
Gaussian beam with a 1/e2 diameter equal to the lens
diameter. In the experiments presented here, α = 0.43
and λ = 815 nm, so dCx/dy = 0.57/µm. Since the state-
dependent potential in Equation (1) is linear in F̂, it
produces the same energy shifts as a magnetic field, so
dCx/dy can also be expressed as an effective magnetic-
field gradient with magnitude B′x = 1.4 G/µm at the
trap center (using U0 = 0.82 mK).

In the absence of an externally applied magnetic
bias field, trapping potentials corresponding to differ-
ent magnetic sublevels mF are displaced by ∆x =
µB∆(gFmF )B′x/(mω

2
r), where µB∆(gFmF ) is the dif-

ference in the magnetic moment. For ∆(gFmF ) =
1/2, the resulting displacement is ∆x = 11 nm, which
is non-negligible compared to the ground state length

√
~/2mω = 24 nm. While this state-dependent displace-

ment could be useful for Raman cooling or other mo-
tional state manipulations [35, 36], it also leads to rapid
internal-state decoherence on the timescale of the radial
trap oscillation period.

This problem can be mitigated by applying a bias
magnetic field B = Bz ẑ orthogonal to x̂ that sup-
presses the effective field gradient according to Btot =√
B2

z + (B′xy)2 ≈ Bz + (B′2x /2Bz)y2. In this case, the
gradient causes only a state-dependence in the strength
of the harmonic trap potential. Superpositions of mag-
netic sublevels that experience different trapping poten-
tials of the form U1(r) = (1 + η)U2(r) are dephased
with a coherence time T ∗2 = 0.97 × 2~/(kBTη) [30],
where T is the temperature of the atom and kB is the
Boltzmann constant. In the presence of a large orthogo-
nal bias field, the polarization gradient contributes to η
as ηpg = µB∆(gFmF )B′2x /(3mω

2Bz) (the factor of 1/3
results from averaging over the three trap axes). We
can use the dependence on Bz to accurately measure
the polarization-induced gradient B′, and improve the
atomic coherence by applying a large bias field Bz (Fig.
1d).

We measure the decoherence between the states |1〉 ≡
|F = 1,mF = −1〉 and |2〉 ≡ |F = 2,mF = −2〉 by load-
ing a single atom into a tweezer trap with a depth of 1.6
mK at zero bias field, then ramping down the trap depth
to 0.82 mK as we ramp up the bias field Bz to the de-
sired value. The atom is optically pumped into |2〉, the
hyperfine transition |2〉 → |1〉 is driven by a two-photon
Raman process in a Doppler-free configuration, and the
state detection is accomplished using a push-out beam,
as described in more detail below. The coherence time
T ∗2 is extracted from a Ramsey-type measurement, using
a fit to the function introduced in Ref. [30].
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At two different trap wavelengths λT , we fit 1/T ∗2 =
1.03 (η0 + ηcirc + ηpg) (kBT/2~). The only free parame-
ters are the degree of circular polarization in the inci-
dent dipole trap beam due to uncompensated birefrin-
gence along the beam path (ηcirc) and the strength of
the effective field gradient B′x. The temperature is de-
termined independently (T = 40µK for this measure-
ment, see below for technique). η0 reflects the different
trapping potentials for F = 1 and F = 2 atoms due
to the finite trap detuning. At λT = (802, 815) nm,
we find B′x = (2.4, 1.4) G/µm, and thus dCx/dy =
(0.46(6), 0.54(3))/µm, in reasonable agreement with our
estimate of 0.57 /µm.

Having developed a detailed understanding of trap-
induced decoherence in this system, we now turn to Ra-
man sideband cooling. We use three orthogonal running-
wave fields to drive Raman transitions, labeled R1-R3
(Fig. 1a). R1 propagates anti-parallel to the dipole trap
(−ẑ) and is circularly polarized to drive σ− transitions.
R2 propagates along x̂ and is circularly polarized; R3
propagates along ŷ and is linearly polarized along x̂. Op-
tical pumping to the |2〉 state is provided by circularly
polarized beams co-propagating with R1, addressing the
F = 1→ F ′ = 2 and F = 2→ F ′ = 2 transitions on the
D2 line. The frequencies of the lasers are set to the mea-
sured resonances in the dipole trap, which are shifted by
∼ 30 MHz from the resonances in free space; the inten-
sities are about 100 times less than saturation. We mea-
sure the F = 1 population by pushing out any atom in
F = 2 using a circularly polarized beam along the optical
pumping path that is resonant with the F = 2→ F ′ = 3
transition on the D2 line, then measuring whether the
atom has remained trapped by turning the molasses back
on.

In a typical experiment, we load an atom from the
MOT into the optical dipole trap with a depth of 1.6
mK at zero bias field, then decrease the trap depth to
0.82 mK while ramping the bias field Bz up to 7.5 G.
Lowering the trap depth serves to increase the coherence
time while leaving the trap frequencies high enough that
sideband cooling is still achievable, with (ωr, ωa) = 2π×
(100, 15.6) kHz. All temperatures reported in this paper
are measured in the 0.82 mK deep trap. We cool the
atoms in the following sequence: we first apply the R2
and R3 beams (Fig. 1) and the optical pumping beams
together for 10 ms to continuously cool the radial modes;
then, we perform ten cycles consisting of 2 ms of axial
cooling using the R1 and R2 beams, followed by 4 ms of
radial cooling using the R2 and R3 beams again. This
sequence prevents the radial modes from heating while
the axial cooling proceeds.

The parameters for the first radial cooling phase are
optimized by measuring the temperature using a re-
lease and recapture technique [37]. This data, shown
in Figure 2a, is fit using a Monte-Carlo simulation [18].
The initial kinetic energy per dimension K is such that
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FIG. 2. (a) Release and recapture temperature measure-
ment. (Closed, open) circles show measurements (before, af-
ter) radial cooling. A Monte Carlo model yields kinetic en-
ergies K such that 2K/kB = 52(4)µK before cooling, and
(2Kr/kB , 2Ka/kB) = (2.4(1), 158(14))µK after cooling. (b,c)
Doppler measurement of the axial kinetic energy before and
after cooling the axial mode. (b) After radial cooling only,
2Ka/kB = 129(19)µK. (c) After radial and axial cooling,
2Ka/kB = 8.1(1)µK.

2K/kB = 52µK. The measurement after cooling yields
anisotropic kinetic energies of 2Kr/kB = 2.4(1)µK in
the radial direction and 2Ka/kB = 158(14)µK in the
axial direction (the release and recapture technique is
only weakly sensitive to the axial mode). The fitted ki-
netic energies represent the global minimum in χ2 over
the entire space of three independent energies for each
axis, including unphysical temperatures less than the
ground state energy ~ω/2kB = 2.4µK for the radial
modes. The agreement of the measured kinetic energy
with that of the zero-point motion suggests that we have
reached the radial ground state after this cooling phase
alone. The radial cooling works best with a two-photon
Rabi frequency ΩR2,R3 = 2π× 17 kHz and a detuning of
−ωr = −2π × 100 kHz from the two-photon resonance.

To characterize the axial temperature independently
after the radial cooling, we measure the Doppler width
of the |2〉 to |1〉 transition when driven with the R1 and
R2 beams. The wavevector ∆k12 = kR1 − kR2 has a
projection onto the axial and radial directions, but the
Doppler profile should mostly be sensitive to the axial
mode here since the radial degrees of freedom are already
cold. After the first stage of radial cooling, we measure a
kinetic energy of 2Ka/kB = 129(19)µK (Fig. 2b). After
optimization, we obtain a feature with a width corre-
sponding to 2Ka/kB = 8.1(1)µK (Fig. 2c). This data
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FIG. 3. Sidebands showing final occupations in the (a) radial
and (b) axial directions. In (a), the red and blue sideband am-
plitudes are fit to independent lorentzians; their ratio yields a
radial temperature n̄r = 0.01+0.06

−0.01. Inset: same measurement
with shorter pulse length so the carrier is also resolved. In
(b) 9 peaks are fit with independent heights, but equal spac-
ings and widths. The heights are well-described by a thermal
distribution with n̄a = 8.1(1).

is fitted to a Gaussian, which conservatively assumes no
power broadening. The optimum cooling parameters are
a two-photon Rabi frequency of ΩR1,R2 ∼ 2π × 5 kHz
and a detuning of −2π × 60 kHz. The parameters used
for the interleaved radial cooling phases are the same as
above.

To obtain more precise measurements of the final tem-
perature of the atom, we resolve the asymmetric motional
sidebands along two axes. The ratio of the sideband am-
plitude gives information about the vibrational state oc-
cupation of the atom [21]. Figure 3a shows the sidebands
measured in the radial direction with small ΩR2,R3. The
blue sideband is essentially absent, with a fitted ampli-
tude 100 times smaller than the red sideband. From this,
we extract a radial mode occupation of n̄r = 0.01+0.06

−0.01.
We do not know to what extent the two radial modes
are non-degenerate or what the natural axes are, but
from the release-and-recapture data showing that both
modes must be very cold, and the fact that the spectrum
shown here does not change if we measure it at a differ-
ent time after the cooling (up to 100 ms later), we infer
that the two modes are not perfectly degenerate and the
R2+R3 beams address both modes. Therefore, we con-

clude that this spectrum reflects the temperature of both
radial modes.

We also resolve the axial motional sidebands using
the R1 and R2 beams at very low power, and observe
a spectrum with nine peaks that is slightly asymmet-
ric (Fig. 3b). We find that the ratios of the measured
peak heights correspond very well to a thermal distribu-
tion ρnn ∝ exp(−n/n̄a) with a mean vibrational number
n̄a = 8.1(8). The corresponding energy (n̄a + 1/2)~ωa =
6.5 µK ×kB is similar to the result of the Doppler mea-
surement above.

Several properties of the cooled atom are worth noting.
The heating rate for the radial degrees of freedom is very
low, less than ∆n̄ < 0.3 over 200 ms. We observe no heat-
ing while translating the atom over distances ∼ 20µm in
∼ 10 ms using a scanning galvanometer mirror. Decreas-
ing the Rabi frequency ΩR1,R2 and detuning during the
last cooling phase does not decrease the final axial tem-
perature. This is possibly due to the fact that we cannot
separately address the axial mode, or to our choice to op-
tically pump along the axial direction, resulting in more
heating along that direction. We are not aware of any
fundamental effects that would prevent cooling to the
ground state in this system.

It may be possible to extend the demonstrated method
to perform high-fidelity state detection [5, 6] while cool-
ing within one hyperfine state, and collecting optical
pumping photons. Furthermore, it should also be pos-
sible to cool small ensembles of atoms held in arrays of
traps [17] or together in a single trap. In the latter case,
Raman cooling is advantageous compared to an optical
molasses, in that the detuning of the optical pumping
beam can be chosen over a wide range, allowing the ef-
fects of light assisted collisions [38] and heating due to
rescattered photons [24] to be reduced.

We acknowledge funding from the NSF, CUA,
DARPA, AFOSR MURI, the Packard Foundation and
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Fannie and John Hertz Foundation and the NSF GRFP.

Note After completion of this work, we have become
aware of a related demonstration of Raman sideband
cooling in an optical tweezer [39].
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