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Antiferromagnets can be used to store and manipulate spin information, but the coupled dynamics
of the staggered field and the magnetization are very complex. We present a theory which is
conceptually much simpler and which uses collective coordinates to describe staggered field dynamics
in antiferromagnetic textures. The theory includes effects from dissipation, external magnetic fields,
as well as reactive and dissipative current-induced torques. We conclude that, at low frequencies and
amplitudes, currents induce collective motion by means of dissipative rather than reactive torques.
The dynamics of a one-dimensional domain wall, pinned at 90◦ at its ends, are described as a driven
harmonic oscillator with a natural frequency inversely proportional to the length of the texture.

PACS numbers: 75.78.Fg, 75.50.Ee, 85.75.-d

New developments have created opportunities for
using antiferromagnets (AFMs) as active compo-
nents in spintronics devices [1]. AFMs are ordered
spin systems which lack a macroscopic magnetiza-
tion in equilibrium because neighboring spins com-
pensate each other. Analogous to ferromagnets,
in AFMs domain walls can be engineered [2], the
anisotropic tunneling magnetoresistance (AMR) is
substantial [3], spin-wave logic gates can be use-
ful [4], and the order parameter can be switched
ultra-fast by light [5]. Additionally, AFMs have no
stray fields, and high-temperature AFM semicon-
ductors can be realized [6], enabling control of the
carrier concentration governing all transport prop-
erties.

In magnetic materials, currents induce torques on
the magnetic moments [7]. In ferromagnets, these
torques can be used to switch the magnetization,
induce steady state precession in magnetic oscilla-
tor circuits, or move domain walls. Theoretical [8]
and experimental [9] results indicate that current-
induced torque effects are present in AFMs as well,
and that these effects are of the same order of mag-
nitude as in ferromagnets. However, several aspects
are fundamentally different. For instance, the dy-
namics in AFMs are described by coupled equations
of the staggered field and the (out-of-equilibrium)
magnetization. Current-induced torques affect these
variables differently.

In AFMs, the staggered field may spatially vary
and is influenced by external magnetic fields and cur-
rents. Traditionally, understanding the complex be-
havior of the temporal- and spatial-dependent order
parameter requires solving a set of coupled equa-
tions with many degrees of freedom. In this Letter,
we formulate a conceptually simpler theory of how

external forces influence the staggered field and mag-
netization dynamics in AFMs in terms of a few col-
lective coordinates. Our description is based on the
phenomenological theory of insulating AFMs [10],
extended to account for charge current flow [11],
making the theory valid also for metallic and semi-
conducting AFMs. It includes the effects of dissi-
pation, external magnetic fields, and both reactive
(adiabatic) and dissipative (non-adiabatic) current-
induced torques in slowly varying inhomogeneous
antiferromagnetic textures.

Consider a basic AFM lattice consisting of
two magnetic sublattices, with magnetic moments
m1(r, t) and m2(r, t), so that the total magnetiza-
tion is m(r, t) = m1(r, t) + m2(r, t), and the anti-
ferromagnetic order parameter is l(r, t) ≡m1(r, t)−
m2(r, t). In the absence of magnetic fields and tex-
tures, the equilibrium magnetization vanishes and
l(r, t) is finite and homogeneous. Below, we con-
sider the dynamics of the magnetization vector and
the unit Néel vector n(r, t) = l(r, t)/l(r, t).

To the lowest order in textures and magnetiza-
tions, the AFM free energy reads [10, 11]

U =

∫
dr

a
2
m2 +

A

2

∑
i=x,y,z

(∂in)2 −H ·m

 , (1)

where a and A are the homogeneous and inhomo-
geneous exchange constants, respectively. H repre-
sents the external magnetic field. From the free en-
ergy (1) and the constraints |n| = 1 and m · n = 0,
which are valid for temperatures well below the Néel
temperature, we can construct the effective fields
fn = −δU/δn = An × (∇2n × n) −m(H · n) and
fm = −δU/δm = −am + n× (H× n). In all our
results, we may generalize the free energy (1) by
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adding anisotropy terms, e.g., easy-axis anisotropy
Kzn

2
z/2.

Hals et. al. [11] introduced phenomenological re-
active (adiabatic) and dissipative (non-adiabatic)
current-induced torque terms, as well as dissipation.
With these additional terms, the equations of mo-
tion are

ṅ = (γfm −G1ṁ)× n + ηγ(J · ∇)n, (2)

ṁ = (γfn −G2ṅ + βγ(J · ∇)n)× n + Tnl, (3)

where γ is the gyromagnetic ratio, G1 and G2

are phenomenological Gilbert damping parameters,
and η (β) parametrize the adiabatic (non-adiabatic)
current-induced torque terms. Throughout this pa-
per, we disregard all non-linear terms that are con-
tained in Tnl [11]. Eqs. (2) and (3) are the AFM
analogs to the Landau-Lifshitz-Gilbert-Slonczewski
equation for ferromagnets. By combining these
equations, the magnetization can be expressed in
terms of the AFM order parameter, giving a closed
equation for the staggered field vector n to the linear
order in the out-of-equilibrium deviations m, ∂tn,J,
and H:

n̈

γ̃
= −n× Ḣ +G1ḟn + (η +G1β)(J̇ · ∇)n

+a[γfn −G2ṅ + γβ(J · ∇)n]. (4)

Here γ̃ ≡ γ/(1 +G1G2) is a modified effective gyro-
magnetic ratio in the presence of dissipation. Eq. (4)
is the starting point for deriving the collective coor-
dinate equations of motion for AFMs.

In ferromagnets, magnetic textures are often rigid,
so that only a few, soft modes dominate the magne-
tization dynamics, as in the seminal work of Schryer
and Walker on domain wall motion [12]. The evolu-
tion of these soft modes can be described by a finite
set of collective coordinates. This approach greatly
simplifies the understanding of complex magnetiza-
tion dynamics, making it possible to approximately
describe the dynamics at low energies by considering
only a few soft modes.

The collective coordinate approach has recently
been applied to magnetization dynamics in ferro-
magnets [13]. We now present how the equations
of motion for the collective coordinates can be con-
structed for AFMs. We transform Eq. (4) by re-
quiring the time dependence of the Néel field to be
described by a set of collective coordinates {bi(t)}:
n(r, t) ≡ n(r, {bi(t)}). The time derivative of the
staggered field is then ṅ = ḃi∂bin. Similarly, n̈ =
b̈i∂bin+O(ḃ2i ), where the second term is disregarded
in our linear response analysis since it is quadratic
in the driving forces.

The dissipation is described in Eq. (4) via the
terms G1ḟn and aG2ṅ. The first term scales as
G1A/(λ

2τ), where λ and τ are characteristic length
and time scales of the staggered field texture. The
second term scales as aG2/τ . In analyzing the rel-
ative strengths of these dissipative terms, we use
the fact that the homogeneous and the inhomoge-
neous exchange constants are related through a ∼
A/(l2d2) [14], where d is the lattice constant and we
have introduced the AFM order parameter l above.
Dissipation in metallic ferromagnets is small since it
arises from the spin-orbit interaction in combination
with electron scattering [15]. It is likely that similar
mechanisms in AFMs are also weak, and that they
have comparable effects on the staggered field and
the magnetization: G1l ≈ G2/l � 1. From this we
can conclude that γ̃ ≈ γ and that the second dissi-
pative term, aG2ṅ, dominates in realistic systems,
where the typical size of the texture λ is such that
λ� d. Hence G1ḟn can be safely disregarded in the
equation of motion (4).

Our main result is the equations of motion for the
soft modes:

M ij(b̈j + γaG2ḃj) = F i. (5)

This equation is derived by introducing the collec-
tive coordinates to Eq. (4), taking the scalar product
with ∂bjn, and integrating over the space. The dy-
namics are equivalent to the classical motion of a
massive particle subject to dissipation-induced fric-
tion and external forces. This equation is model in-
dependent and can be used to determine the param-
eters of AFMs, e.g. the Gilbert damping G2 and the
homogeneous exchange constant a, which are usually
difficult to identify in experiments.

In Eq. (5), M ij is the effective mass arising from
the exchange interaction between the spins. The to-
tal force inducing motion of the collective coordi-
nates, F i = F iX +F iJ +F iH , is a sum of the exchange
force, the current-induced force, and the external
field force:

M ij(b) =
1

aγ2

∫
dV ∂bin · ∂bjn, (6a)

F iX(b) =

∫
dV ∂bin · fn, (6b)

F iJ(b) =

∫
dV
[
β∂bin · (J · ∇)n

+
η +G1β

aγ
∂bin · (J̇ · ∇)n

]
, (6c)

F iH(b) =
1

aγ

∫
dV Ḣ · (n× ∂bin). (6d)

More generally, Eq. (6b) can also be expressed as
F iX = ∂biU , to include the effective material-specific
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forces which act on the AFM through the exchange
interaction and magnetic anisotropy. Eq. (6c) in-
cludes the reactive and dissipative current-induced
forces, both of which are important for the dynam-
ics of the collective coordinates bi. Eq. (6d) rep-
resents the response to an external magnetic field.
Note that in the linear response regime, only time
varying external magnetic fields affect the dynamics
of the collective coordinates in AFMs, in contrast
to the situation for ferromagnets [13], making the
collective motion in AFMs more resistant to stray
fields.

We now apply the general collective coordinate
description, Eq. (5), to an isotropic one-dimensional
antiferromagnetic texture, an orientational domain
wall [16], in which the antiferromagnet is pinned in
the x and z directions at z = 0 and z = λ, re-
spectively. The staggered field n(z, t) varies slowly
in the z direction, see Fig. 1. The pinning can
be achieved by placing the antiferromagnet in con-
tact with ferromagnets, as schematically shown in
Fig. 1(c). In general, the staggered field can be ex-
pressed in terms of two angles θ and φ: n(z, t) =
{cos θ cosφ, cos θ sinφ, sin θ}. In equilibrium θ = θeq
and φ = 0, with θeq(z) = πz/(2λ). Without loss
of generality, we assume that the out-of-plane angle
φ remains zero when a current passes through the
system, which gives an AFM texture varying in the
x-z plane only.

FIG. 1. (color online) A 1D AFM texture pinned at
a relative angle of 90◦ in the left and right reservoirs.
(a) shows the equilibrium orientation of the staggered
field, (b) depicts how a current J exerts a torque on the
staggered field vector, forcing the center coordinate z0 to
be displaced by r, and (c) shows schematically a setup
of an AFM between two pinning ferromagnets.

In the steady state regime with a constant current

along the z direction, J = Jẑ, the solution of Eq. (4)
is θs(z) = π

2 (1 − eQz)/(1 − eQλ), where Q = βJ/A.
As a collective coordinate representing the softest
mode, we use the deviation of the texture center, r,
from its equilibrium position z0, which is the point
where the x component of the staggered field vector
equals the z component, θ(r) = π/4. In equilibrium,
when there are neither applied currents nor external
fields, the center coordinate is z0 = λ/2. Motivated
by the steady state solution θs, expanding for small
Q in the low current regime to the linear order in the
deviation r from equilibrium, we use Eq. (5) with the
ansatz that the staggered field can be fully described
by the sine and cosine of a function θ(z, r):

θ(z, r) =
πz

2λ

[
1 +

4(z − λ)r

λ2

]
. (7)

Using this ansatz and the equation of motion (5), we
find that the deviation from equilibrium, r, obeys

Mr̈ + Γṙ +Mω2
0r = FJ + FH , (8)

where M = λ/(aγ2) is the effective mass, ω0 =
γ(10Aa)1/2/λ is the natural frequency of the system,
and Γ = λG2/γ is the damping coefficient. There are
two contributions to the external forces: One from
the current, FJ = −5λ[βJ + (η + βG1)J̇/(aγ)]/4,
and the other from time-varying external fields,
FH = 5λ2Ḣy/(2πaγ). For DC currents, the reac-
tive (adiabatic) force parametrized by η plays no
role, and only the dissipative (non-adiabatic) force
parametrized by β is important for the texture dy-
namics. When the driving forces are independent
of time, Eq. (8) describes damped harmonic os-
cillations about a new perturbed position rnew =
−βJλ2/(8A). This solution is valid as long as
rnew � λ/2. Hence, using β∗ = βJd/A = −0.005,
the approach works well for systems with lengths up
to several hundred lattice constants.

Numerical values for the natural frequency can
be estimated for AFM metals. For example, in
FeMn, the inhomogeneous exchange constant is A =
0.94 ·10−14 J/m [17], the lattice constant is dFeMn =
3.6 Å [18], and the magnetic moment per sublattice
is 1.65 µB , with µB being the Bohr magneton, giv-
ing a natural frequency of approximately 1 GHz for a
FeMn texture with a length of 100 lattice constants.

In Fig. 2, the solution of the time-dependent equa-
tion of motion for r, Eq. (8), has been compared to
numerical results of a micromagnetic simulation of
the coupled Eqs. (2) and (3), with the boundary
conditions described in Fig. 1. The equations were
first written in dimensionless form by scaling the z
axis with the lattice constant d, and the time axis
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with t̃ = (γal)−1. Other dimensionless quantities, as
well as the numerical values used in the simulation
presented in Fig. 2, are summarized in Table I.
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FIG. 2. (color online) Transient response of the devia-
tion r from the equilibrium position z0 = λ/2, after a
constant current has been applied at time t = 0. The
AFM texture shows damped oscillations around a new
perturbed position. The magnitude of the perturbation
depends on the system length and the current density.
The inset shows the response when the current density
is tripled.

Fig. 2 shows that the complex spatio-temporal dy-
namics of the AFM texture can be described by
the motion of the single soft mode r. Fitting the
simple equation of motion, Eq. (8), to experimental
data, e.g., from AMR measurements, can provide
good estimates of the phenomenological parameters
in AFMs. The generality of Eq. (5) also makes the
collective coordinate approach a powerful tool for
investigating the dynamics of more complex AFM
textures with more than a single soft mode.

The staggered dynamics represented by the center
coordinate r can be measured via the AMR effect.
The magnitude of AMR in bulk AFMs is not known,
but since the tunneling AMR [3] is significant, we be-
lieve its bulk value will be too. A plausible assump-
tion is that the simplest possible phenomenological
model of AFM-AMR is similar to AMR in ferromag-
nets, but with the AMR depending on the orienta-
tion of the staggered field rather than the magne-
tization: ρ(n) = ρ0 + ρani(n · ẑ)2, where ρ0 is the
isotropic resistivity and ρani is the anisotropic resis-
tivity. Integrating the resistivity over the system,
using the ansatz in Eq. (7), and expanding to linear
order in r, gives the effect of the AFM texture on
the resistance as R(t) = R0 + ρani[λ/2 − 8r(t)/π2].
Therefore, it should be possible to observe the effects
of both DC and AC currents. For DC currents, the
total resistance R(t) will be enhanced or reduced
depending on the current direction. For AC cur-

rents, by sweeping the frequency, one should observe
enhanced deviations of the resistance when the fre-
quency equals the natural frequency of the texture.
This setup offers the possibility of measuring the ef-
fect of the current-induced torque on the staggered
field, a phenomenon which is, in general, difficult to
observe experimentally.

TABLE I. Dimensionless numerical constants

Constant Composition Value

a∗ al2d2/A 1

α1 G1l 0.01

α2 G2/l 0.01

β∗ βJd/A -0.005

η∗ ηJd/(Al) -0.005

λ∗ λ/d 100

We can also apply our collective coordinate ap-
proach to an AFM domain wall described by the
Walker ansatz: tan(θw) = e(z−rw)/λw . Here we in-
troduce the easy axis anisotropy Kz, defining the do-
main wall width as λw =

√
A/Kz. To the best of our

knowledge, the experimental values of Kz for AFM
materials are still not available. However, anisotropy
energies in AFMs can be comparable to, or even
stronger than, those in ferromagnets since they often
involve heavy elements with a strong spin-orbit in-
teraction [19]. We also reintroduce the out-of-plane
tilt angle φw, and use the center of the domain wall
rw, φw, and the domain wall width λw as the three
collective coordinates. In agreement with the sim-
plified treatment in Refs. 11 and 20, by applying a
constant current, the domain wall motion gradually
relaxes to a steady state, where the wall moves with
the constant velocity ṙw ≈ −γβJ/G2. Our approach
shows that the out-of-plane tilt angle is a hard mode,
which can only be excited by a time varying exter-
nal magnetic field. This is very different from the
motion of domain walls in ferromagnets, where a
moving domain wall also has a finite tilt angle [21].
Additionally, in linear response, there is no distor-
tion of the domain wall width for AFMs.

In conclusion, we have derived equations of mo-
tion for the collective coordinates corresponding to
soft modes of AFM textures to the linear order
in currents, magnetization, and external magnetic
field. In contrast to ferromagnets, the dynamics are
second order in time derivatives, e.g., the effective
particles described by the soft coordinates acquire
a mass, and have no first-order contribution from
time-independent external magnetic fields. We have
applied our theory to a one-dimensional model of a
slowly varying antiferromagnetic texture pinned at
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90◦ at the edges, and found the natural frequency
and deviations of the center coordinate in terms of
the system parameters. The results show that the
dissipative (non-adiabatic) current-induced torque is
crucial for the dynamics of the AFM textures.
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