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Using the density matrix renormalization group, we investigate the S = 1/2 Heisenberg model
on the honeycomb lattice with first- (J1) and second-neighbor (J2) interactions. We are able to
study long open cylinders with widths up to 12 lattice spacings. For J2/J1 near 0.3, we find an
apparently paramagnetic phase, bordered by an antiferromagnetic phase for J2 . 0.26 and by a
valence bond crystal for J2 & 0.36. The longest correlation length that we find in this intermediate
phase is for plaquette valence bond (PVB) order. This correlation length grows strongly with
cylinder circumference, indicating either quantum criticality or weak PVB order.

PACS numbers: 75.10.Kt, 75.10.Jm, 73.43.Nq

Progress in finding realistic model quantum Hamilto-
nians with spin-liquid (SL) ground states has accelerated
dramatically in the last two years, almost 40 years since
Anderson first proposed a resonating valence bond (RVB)
state as a possible ground state of the triangular Heisen-
berg model [1]. One key recent advance was the discovery
using the density matrix renormalization group (DMRG)
of a gapped SL ground state in the spin-1/2 kagome
Heisenberg antiferromagnet [2, 3]. Spin liquid phases
have been suggested for various other models, such as
the half-filled honeycomb Fermi-Hubbard model [4] and
the square lattice spin-1/2 Heisenberg antiferromagnet
with second-neighbor (J2) interactions [5, 6]. However,
some skepticism has been expressed about the evidence
for spin liquids in the latter two models [7, 8].

The main defining feature of a quantum spin liquid is
the absence of any spontaneously broken symmetry, par-
ticularly either magnetic or valence-bond order. Frus-
tration, which discourages order, is a key ingredient of
models potentially containing spin liquid phases. Spin
liquids arise in several analytic treatments and exactly
solvable, simplified, but less realistic models [9]. A key
feature distinguishing types of spin liquids is the pres-
ence or absence of a gap to all excitations. The kagome
Heisenberg spin liquid is found to be gapped. To satisfy
the Lieb-Schultz-Mattis theorem, gapped spin liquids for
models with a net half-integer spin per unit cell must have
“hidden” topological degeneracies in the thermodynamic
limit, which depend on the topology of the system. The
simplest possibility is a Z2 spin liquid. Since local mea-
surements cannot identify Z2 or other topological orders,
it is challenging to identify its presence in a numerical
study. The degeneracies characteristic of a 2D gapped
Z2 spin liquid have not been accessible for the system
sizes studied to date. Odd-width cylinders spontaneously
dimerize in a pattern that is characteristic of a quasi-one-
dimensional system [2, 5]. Another key feature of a Z2

spin liquid is the presence of a − ln 2 constant term cor-
rection to the linear growth of the entanglement entropy
with subsystem perimeter. This term has now been mea-

sured in the nearest-neighbor kagome system [3] and also
in the kagome system with next-nearest-neighbor interac-
tion J2 [10], where for J2 = 0.1 the gaps are large and the
entanglement entropy correction term can be measured
particularly precisely. Thus, there is now solid evidence
that the ground state of the kagome spin-1/2 antiferro-
magnet is a gapped Z2 spin liquid.
In this paper, we examine the spin-1/2 Heisenberg an-

tiferromagnet on the honeycomb lattice (see Fig. 1(a))
with Hamiltonian

H = J1
∑

〈i,j〉

Si · Sj + J2
∑

〈〈i,j〉〉

Si · Sj . (1)

where the sum over 〈i, j〉 runs over nearest-neighbor
pairs of sites and the sum 〈〈i, j〉〉 runs over next-nearest-
neighbors. We take J1 = 1 (antiferromagnetic (AF)) and
consider only J2 > 0. Our work follows other studies
of this and similar Heisenberg models [11–20], motivated
by the Hubbard model results [21]. Most of these stud-
ies report a nonmagnetic phase near J2/J1 ∼ 0.2 − 0.4,
and we agree, but the results are in general disagreement
on the range and nature of this phase. A variational
Monte Carlo study indicated a spin liquid in the range
0.08 to 0.3 [20]. A combination of exact diagonalization
and valence-bond treatment reported a plaquette valence
bond (PVB, see Fig. 1(b)) crystal in the range 0.2-0.4
[11]. Exact diagonalization on small lattices [12], and
the coupled-cluster method both suggest plaquette va-
lence bond (PVB) order [13]. Earlier work reported that
dimer correlations aren’t strong enough for PVB order
[16]. Functional renormalization group work claims this
phase has weak dimer and plaquette response [15]. Vari-
ational entangled plaquette states suggest that none of
the order parameters remain nonzero [19]. Other theo-
retical work has focused on the possibility of a Z2 SL on
the honeycomb lattice and on phase transitions between
Neel and staggered valence-bond crystal (SVBC) phases
[22–24].
Here we report that the ground state displays an ap-

parently paramagnetic phase for 0.26 . J2 . 0.36. For
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FIG. 1: (color online) (a) One hexagon of the honeycomb lattice showing J1 and J2 interactions. The six sides of the hexagon
are J1 bonds and the six J2 bonds are shown as (blue) dashed lines. (b) Illustration of the pattern of plaquette valence bond
(PVB) order. The spin-spin correlations differ between the bonds shown thin (black) vs. thick (red). (c)Three phases on
the YC6-0 cylinder with 300 sites and a gradient of J2. The widths of lines are proportional to |〈Si · Sj〉|. We also show the
second-neighbor spin correlation, but only when its value is negative. The arrows represents the values of 〈Sz

i 〉 at each site.
The scales for correlations and magnetizations are indicated. We remove several bonds in one zigzag row of the cylinder, so
that the AF spin pattern is more clearly seen. The two vertical lines at J2 = 0.26 and 0.36 indicate estimates of the phase
boundaries.

J2 . 0.26, we find the usual two-sublattice AF phase.
For J2 & 0.36, we find a staggered valence bond crys-
tal (SVBC). We have studied in some detail the system
with J2 = 0.3, deep within the intermediate phase that
is neither AF nor SVBC. We examine various correla-
tion functions of this ground state on various cylinders.
The longest correlation length that we find is for PVB
order. The strong growth of the PVB correlation length
with cylinder circumference indicates that the system is
either near a quantum critical point or may have weak
long-range PVB order.
We use cylindrical (C) boundary conditions with open

ends for our DMRG [25, 26] calculations. We label the
cylinders either XCM-N or YCM-N. The labels X or Y
indicated whether a first-neighbor bond is oriented hor-
izontally (X) or vertically (Y). For XC cylinders, M is
the number of sites along a zigzag vertical column and
N means that the periodic boundary conditions are con-
nected with a shift of N zigzag columns to the left or right.
For YC cylinders, M is the number of zigzag horizontal
rows and N means the connection has a shift by N sites
along a zigzag row. For example, in the XC8-0 cylinder,
one set of edges of each hexagon lie along the X direction,
and there are 8 sites along the zigzag columns, which are
connected periodically. So the circumference is C = 4

√
3

lattice spacings. For the YC4-0 cylinder, one set of edges
of each hexagon lie along the Y direction and the cylin-
der is connected periodically along the Y direction with
circumference 6 lattice spacings. For the XC9-1 cylin-
der, the connection has a horizontal shift of one zigzag
column, producing a circumference of C = 3

√
7.

In Fig. 1(c), we present the ground state of a single
system which gives an overview of the entire phase dia-
gram. For this long YC6-0 cylinder, J2 is uniform along
the vertical direction, but varies linearly with the hori-
zontal position from J2 = 0 at the left edge to J2 = 0.5 at

the right edge. To make the AF order visible, we apply
a staggered field at the left end of the cylinder. As J2
increases along the cylinder, the AF order decreases, be-
coming negligible in the intermediate phase. We will dis-
cuss this intermediate state in detail below. The SVBC
phase appears clearly for J2 & 0.36. This SVBC phase
has strong first-neighbor correlations along the vertical
direction with strong horizontal second-neighbor correla-
tions connecting them to form “ladders”. Below we will
determine the phase boundaries of the AF and SVBC
phases more accurately.
First we estimate the boundary of the AF phase. One

technique to determine magnetic order parameters using
DMRG is to put strong ordering fields on the edges of
an open cylinder, and adjust the aspect ratio Ly/Lx to
to minimize the finite size effects [27]. For both square
and triangular spin-1/2 Heisenberg antiferromagnets, an
aspect ratio near 1.7 ∼ 1.9 is found to minimize the finite
size effects. For XCM-0 cylinders with M columns, the
aspect ratio is

√
3, which we use. For J2 = 0, we deter-

mine that 〈Sz〉 ∼= 0.2720, which is close to the value de-
termined using Monte Carlo in the thermodynamic limit
〈Sz〉 = 0.2677(6) [28]. With J2 increasing, we find that
the magnetization reduces to near zero for J2 ∼= 0.26 in
Fig. 2. The various cluster sizes all point to the phase
transition near 0.26. This phase transition point is larger
than the classical limit value of J2 = 1

6
. Ref. [20] claims

the Neel order disappears at 0.08, however the value we
find here is more consistent with other studies which give
J2 ∼= 0.2 [11, 14].
To estimate the boundary of the SVBC phase we study

several XC cylinders with J2 varying from 0.28 to 0.40
using the method in Fig. 1. These results show the
SVBC phase for J2 & 0.36. We also use the entangle-
ment entropy and its first derivative with respect to J2
to estimate the phase transition point. We make vertical
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FIG. 2: (color online) The staggered magnetization at the
center of the cylinder versus J2 for various XC cylinders. The
inset shows how the local magnetization decays from the edge
of a long XC10 cylinder for various values of J2.
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FIG. 3: (color online) The entanglement entropy and its
derivative versus J2 for different XC cylinders near the tran-
sition in to the SVBC phase.

cuts between zigzag columns, the dividing line between
the two parts of the system bisecting a column of hor-
izontal bonds, and measure the entanglement entropy.
As seen in Fig. 3, the entropy drops in going from the
intermediate phase to the SVBC. The derivative of the
entropy shows a peak around 0.37 for the XC8-0 cylin-
der, and around 0.36 for the wider XC10-0 and XC12-0
cylinders. In addition, the height of this peak increases
with the system width, as expected for a peak indicating
a phase transition.[29–31]

On XC cylinders, we find the SVBC state has strong
first- and second-neighbor correlations along diagonal di-
rections, forming diagonally oriented ladders. Thus there
are two degenerate diagonal SVBC states on an XC
cylinder, whereas for YC cylinders there is only the one
vertical SVBC pattern (Fig. 2). For an infinite two-
dimensional system all 3 of these SVBC ground states
would be degenerate by rotational symmetry. In the clas-
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FIG. 4: (color online) Weak PVB order at J2 = 0.3 on (a)
YC7-3, (b) XC9-1 and (c) XC12-0 cylinders. The widths of
the lines are proportional to |〈Si ·Sj〉+0.32| for all the plots,
with blue solid(red dashed) lines for negative(positive) val-
ues. The bond strength scale is indicated at the top. The
three different sublattices of plaquettes are labeled as A, B,
C. In these figures we keep m = 6000 states in our DMRG
calculation. The truncation error for XC9-1 is smaller than
10−7, while it is near 10−6 for the wider YC7-3 and XC12-0
cylinders.

sical limit, for large J2 values, the ground state is a spin
spiral state. However, quantum fluctuations are strong
enough to melt the spiral order and form the SVBC, in
agreement with ref. [17].

In the rest of this paper, we focus specifically on
J2 = 0.3 inside the intermediate phase [32]. To mea-
sure magnetic correlations, we apply “pinning” magnetic
fields at one end of the cylinder, and measure the result-
ing magnetization pattern. Unlike in the AF phase, the
induced magnetization decays exponentially from the end
of the cylinder with a decay length of 2 to 3 lattice spac-
ings for various cylinders. We further check the response
to a local magnetic field applied to a spin at the cylin-
der center. This local magnetic field response is quite
short ranged. It only influences its nearby surrounding
sites, as opposed to generating a large region of staggered
magnetization in the AF phase.

Refs. [11, 12] suggest that the intermediate phase is a
PVB phase with long range dimer-dimer correlations. To
investigate PVB ordering we study cylinders with peri-
odic boundary conditions that are compatible with PVB
order, including YC4-0, YC6-0, YC7-3, YC8-0, XC6-0,
XC9-1 and XC12-0 [33]. We pin the PVB pattern at the
cylinder ends by the choice of which spins are kept and
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FIG. 5: (color online) PVB order correlation length ξ for
different cylinder circumferences C at J2 = 0.3. Black circles
indicate YC cylinders; red diamonds indicate XC cylinders.
The green straight line illustrates the expected linear behavior
at the quantum critical point of the two-dimensional system.
The inset shows the local PVB order parameter vs. distance
from the end of the cylinder in lattice spacings. The estimated
PVB correlation length ξp is indicated for each cylinder.

how long the cylinder is (see Fig. 4).

We define a local PVB order parameter at each site
using the nearest-neighbor spin correlations on the 3 ad-
jacent plaquettes. The plaquettes form 3 sublattices in
the PVB phase, as labeled in Fig. 4 (a)-(b), and one
plaquette from each sublattice is adjacent to each site.
Let EA = −

∑
A〈Si · Sj〉 be the sum over the 6 bonds

around plaquette A. Then we define the local PVB order
parameter as

P = EA + EB exp (
2π

3
i) + EC exp (

4π

3
i) . (2)

Near the ends of the cylinders, this order parameter is
nonzero, and in general it is a complex number. We
extrapolate this local order parameter versus the trun-
cation error to estimate its values in the limit of large
bond dimension m. For long cylinders, its magnitude
decays exponentially with distance from the end, with
a correlation length ξp that depends on the cylinder, as
shown in the inset of Fig. 5. These PVB correlations can
be slightly incommensurate, particularly for the narrower
YC cylinders. For the XC9-1 cylinder with a shifted con-
nection, we measure the distance from the end along the
direction perpendicular to the wrapping vector, to obtain
the shortest PVB correlation length ξp.

The PVB correlation length ξp versus cylinder circum-
ference C is shown in Fig. 5. This figure includes cylin-
ders with all orientations, and we see that for our larger
circumferences, the XC cylinders appear to have a longer
PVB correlation length than the YC cylinders. If the
2D system is at a quantum critical point, the correlation
length is expected to be proportional to the circumfer-
ence, by standard finite-size scaling. It appears that the

correlation length actually increases faster than the cir-
cumference, suggesting that this system may have weak
PVB long range order in the 2D limit of infinite circum-
ference.
In conclusion, we have studied the S = 1/2 honeycomb

J1−J2 Heisenberg model on various cylinders extensively
using DMRG. We find that the ground state displays a
paramagnetic phase for 0.26 . J2 . 0.36. By studying
PVB order on various cylinders, we find that the PVB
correlation length grows at least linearly with the cylin-
der circumference. This suggests that in this phase the
system is either quantum critical or has weak long-range
PVB order. These results are compatible with an early
theoretical study that a direct phase transition between
an AFM and a PVB state, is possible on the honeycomb
lattice [34].
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Note added.—Recently we learned that Ganesh et al.

[35] have studied the same model with DMRG. They re-
ported that the ground state has three phases includ-
ing Neel, f-wave PVB state and dimer state with critical
points at J2/J1 = 0.22 and 0.35. Their findings are gen-
erally consistent with our results, and they also make the
important point that this appears to be an example of
deconfined quantum criticality.
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