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We revisit the issue of superconductivity at the quantum-critical point (QCP) between a 2D
paramagnet and a spin-density-wave metal with ordering momentum (π, π). This problem is highly
non-trivial because the system at criticality displays a non-Fermi liquid behavior and because the
effective coupling constant λ for the pairing is generally of order one, even when the actual interaction
is smaller than fermionic bandwidth. Previous study [M. A. Metlitski, S. Sachdev, Phys.Rev.B
82, 075128 (2010)] has found that the renormalizations of the pairing vertex are stronger than in
BCS theory and hold in powers of log2(1/T ). We analyze the full gap equation and argue that
summing up of the leading logarithms does not lead to a pairing instability. Yet, we show that
superconductivity has no threshold and appears even if λ is set to be small, because subleading
logarithmical renormalizations diverge and give rise to BCS-like result log 1/Tc ∝ 1/λ. We argue
that the analogy with BCS is not accidental as at small λ superconductivity at a QCP predominantly
comes from fermions which retain Fermi liquid behavior at criticality. We compute Tc for the actual
λ ∼ O(1), and found that both Fermi-liquid and non-Fermi liquid fermions contribute to the pairing.

Introduction. Superconductivity at the onset of
density-wave order in a metal is an issue of high cur-
rent interest, with examples ranging from cuprates [1],
to Fe-pnictides [2] and other correlated materials [3–5]
It is widely believed that the pairing in these systems
is caused by repulsive electron-electron interaction, en-
hanced in a particular spin or charge channel, which be-
comes critical at the quantum-critical point (QCP). The
pairing problem at QCP is highly non-trivial in D ≤ 3,
as scattering by a critical collective mode destroys Fermi
liquid (FL) behavior above Tc (Ref. [6, 9]). This is par-
ticularly relevant for systems near uniform density-wave
instability (e.g., a ferromagnetic or a nematic one). In
this case, FL behavior is lost on the whole Fermi-surface
(FS), and superconductivity can be viewed as a pairing
of incoherent fermions which exchange quanta of gap-
less collective bosons [7–11]. The pairing of incoherent
fermions is qualitatively different from BCS/Eliashberg
pairing of coherent fermions in a FL because in the in-
coherent case the pairing in D < 3 occurs only if the
interaction exceeds a certain threshold [8, 12, 13]. For
D = 3 there is no threshold, but at small coupling con-
stant λ, log Λ/Tc = 1/

√
λ rather than 1/λ (Ref. [15]), in

close analogy to Tc in color superconductivity (CSC) of
quarks mediated by the exchange of gluons [16]

The non-FL behavior at criticality is less pronounced
for systems near density-wave order at a finite momen-
tum, because only fermions near particular points along
the FS (hot spots) lose FL behavior at criticality. Still,
fermions from hot regions mostly contribute to the pair-
ing, and early studies of superconductivity at the onset
of (π, π) spin-density-wave (SDW) order [8, 9] placed the
pairing problem into the same universality class as for
QCP with q = 0. The 2D problem has been recently
re-analyzed [17] by Metlitski and Sachdev (MS). They
argued that it is important to include into the considera-
tion the momentum dependence of the self-energy along
the FS, neglected in earlier studies. Using the full form

of Σ(ωm,k) for k on the FS, they found that the one-
loop renormalization of the pairing vertex is larger than
previously thought – it is log2 instead of log, and that
the enhancement comes from fermions somewhat away
from hot spots, for which Σ(ωm,k) has a FL form at
the smallest frequencies. The log2 behavior in the per-
turbation theory holds for CSC, and MS result raises the
question whether the pairing problem at a 2D SDW QCP
is in the same universality class as CSC. The related is-
sues raised by MS work are: (i) is the problem analogous
to the pairing at a 2D SDW QCP a FL phenomenon,
or non-FL physics is essential, (ii) what sets the scale
of Tc, and (iii) is Tc non-zero only if the coupling λ ex-
ceed a finite threshold, as it happens if one approximates
Σ(ωm,k) by Σ(ωm) at a hot spot, or Tc is non-zero even
at smallest λ, like in CSC?

In this letter, we address these issues. We first show
that the analogy with CSC does not extend beyond one-
loop order, and in our case the summation of log2 terms
in the Cooper channel does not give rise to a pairing
instability. However, that subleading log terms do give
rise to a pairing instability, and at weak coupling yield
log Λ/Tc ∝ 1/λ, like in BCS theory. We show that the
analogy with BCS formula is not accidental because the
pairing at small λ predominantly comes from fermions for
which fermionic self-energy has a FL form. We then an-
alyze the physical case λ = O(1) and argue that in this
case fermions from both FL and non-FL regimes con-
tribute to the pairing and that Tc ≈ 0.04ω0, where ω0

is the frequency at which Σ(ωm) at a hot spot becomes
equal to ωm. The numerical prefactor agrees with the
slope of Tc obtained by solving the gap equation numer-
ically along the full FS [21].

The model. We follow earlier works[8, 9, 17]
and analyze the pairing near an antiferromagnetic QCP
within the semi-phenomenological spin-fermion model.
The model assumes that antiferromagnetic correlations
develop already at high energies, of order bandwidth, and
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mediate interactions between low-energy fermions. The
static part of the spin-fluctuation propagator is treated
as a phenomenological input from high-energy physics,
but the the dynamical Landau damping part is self-
consistently obtained within the model as it comes en-
tirely from low-energy fermions [8, 9, 17]. In the Supple-
mentary material we review justifications for the spin-
fermion model and compare spin-fermion approach with
the RG-based approaches [22–25] which treat supercon-
ductivity, magnetism, and specific charge density-wave
orders on equal footings.
We assume, like in [8, 9, 17], that fermions have N ≫ 1

flavors and that collective spin excitations are peaked at
Q = (π, π), and focus on the hot regions on the FS, i.e.,
on momenta near kF , for which kF +Q is also near the
FS. The Lagrangian of the model is given by [3, 9, 17]

S = −
∫ Λ

k

G−1
0 (k)ψ†

k,αψk,α +
1

2

∫ Λ

q

χ−1
0 (q) Sq · S−q

+g

∫ Λ

k,q

ψ†
k+q,ασαβψk,β · S−q. (1)

where
∫ Λ

k stands for the integral over d−dimensional
k (up to some upper cutoff Λ) and the sum over
fermionic and bosonic Matsubara frequencies, G0 (k) =
G0(ωm,k) = 1/(iωm−vF,k(k−kF )) is the bare fermion
propagator, and χ0 (q) = χ0(Ωm,q) = χ0/(q

2 + ξ−2)
is the static propagator of collective bosons, in which
ξ−1 measures a distance to a QCP and q is measured
with respect to Q. We set ξ−1 = 0 below. The
fermion-boson coupling g and χ0 appear in theory only
in combination ḡ = g2χ0 and we will use ḡ below. The
Fermi velocities at hot spots separated by Q can be ex-
pressed as vF,1 = (vx, vy) and vF,2 = (−vx, vy), where
x axis is along Q. We will also use α = vy/vx and
vF = (v2x + v2y)

1/2. The model of Eq. (1) can be equiva-
lently viewed as a four-patch model for fermions near hot
spots at ±kF and ±(kF + Q) (Ref. [17, 20]). The hot
spot model is obviously justified only when the interac-
tion ḡ is smaller than EF .
The fermion-boson coupling gives rise to fermionic

and bosonic self-energies. In the normal state, bosonic
self-energy accounts for Landau damping of spin ex-
citations, while fermionic self-energy accounts for the
mass renormalization and a finite lifetime of a fermion.
At one-loop level, self-consistent normal-state analysis
yields [9, 17, 18]

χ(Ωm,q) =
χ0

q2 + |Ωm|γ (2)

Σ(ωm, k‖) =
3ḡ

4πvF

2ωm
√

γ|ωm|+
(

2k‖α

1+α2

)2

+
∣

∣

∣

2k‖α

1+α2

∣

∣

∣

,(3)

where γ = 2Nḡ/(πvxvy) and k‖ is a deviation from
a hot spot along the FS. The bosonic propagator

χ(Ωm,q) describes Landau-overdamped spin fluctua-
tions. The fermionic self-energy has a non-FL form right
at a hot spot – Σ(ωm, 0) = (|ωm|ω0)

1/2signωm, where
ω0 = (9ḡ/(16πN))(2vxvy/v

2
F ). Away from a hot spot,

Σ(ωm, k‖) retains a FL form at the smallest ωm and scales
as Σ(ωm, k‖) ∝ ωm/|k‖|.
We use Eqs. 2 and 3 as inputs for the pairing prob-

lem and neglect higher order terms in the loop expan-
sion. Most of higher-order terms are small in 1/N , but
some terms with n ≥ 4 loops do not contain 1/N (Refs.
[17, 19, 20]). The terms without 1/N include, in partic-
ular, feedback effects from pairing fluctuations on the
fermionic and bosonic propagators. We verified that
these feedback effects preserve the forms of χ and Σ, and
we just assume that they do not substantially modify the
prefactors.

The pairing vertex We add to the action the anoma-
lous term Φ0(k)ψk,α(iσ

y)αβψ−k,β and use Eq. (1) to
renormalize it into the full Φ(k). At Tc, the pairing sus-
ceptibility χpp(k) = Φ(k)/Φ0 must diverge for all k. The
bare Φ0 can be set constant within a patch, but has to
change signs between patches separated by Q (the pair-
ing symmetry at the onset of SDW order is d−wave [26]).
The one-loop renormalization of Φ(k) at k = (ω ∼ T, 0)
was obtained by MS:

Φ(ω ∼ T, 0) = Φ0(1+
λ

2π
log2 Λ/T ), λ =

2α

(1 + α2)
, (4)

where Λ is the smaller of ω0 and α4E2
F /ω0. Notice that

neither the coupling constant ḡ not 1/N appear in (4),
the only parameter is the ratio of the velocities α, which
is a geometrical property of the FS. For a cuprate-like
FS, α ∼ 1, i.e., the pairing coupling constant λ = O(1).
To understand the physics of the pairing at the QCP,
we find that it is instructive to formally replace λ by ελ
and first analyze the pairing in the “weak coupling” case
ε≪ 1.

FIG. 1: Diagrammatic representation for the pairing vertex.
The shaded triangle is the full Φk, the unshaded vertex is the
bare Φ0, solid lines are full fermionic propagators, and the
wavy line is the Landau-overdamped spin propagator. The
pairing vertex contains iσy

α,β, the vertices where wavy and
solid lines meet contain σγδ .

Let’s first see where log2 renormalization comes from.
The one-loop diagram for Φ contains two fermionic prop-
agators G(k) and G(−k) and one bosonic χ(k) (Fig.1).
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Large N allows one to restrict χ(Ωm,k) to momenta con-
necting points at the FS and integrate over momenta
transverse to the FS in the fermionic propagators only.
Because Σ does not depend on this momentum, the
integration is straightforward, and yields, to logarith-
mic accuracy

∫

GGχ ∝
∫

dk‖
∫

T
dΩm(χ(Ωm, k‖)/|Ωm +

Σ(Ωm, k‖))|. At k2‖ > γΩm and |k‖| < kF ḡ/vF ,

1/|Ωm + Σ(Ωm, k‖)| scales as |k‖/Ωm| and χ(Ωm, k‖) ∝
1/k2‖. Integrating over k‖ we obtain

∫

γ|Ωm|
dk2‖/k

2
‖ ∝

log |Ωm|, and the remaining integral over frequency yields
∫

GGχ ∝
∫

T
(dΩm/|Ωm|) log |Ωm| ∝ log2 T . We see that

the log2 T dependence originates from extra logarithm
from k−integration. This extra logarithm is in turn the
consequence of Ωm/k‖ form of self-energy Σ(Ωm, k‖) at

k2‖ > γΩm. As Σ ∝ ω is the property of a FL, the log2 T
renormalization comes from fermions which preserve a
FL behavior at a QCP. We further see that the one-loop
renormalization can be interpreted as coming from the
process in which fermions are exchanging quanta of an
effective local logΩ interaction. The same process deter-
mines one-loop renormalization of Φ in CSC.
The log2 analysis can be extended beyond leading or-

der. We assume that λ = 2εα/(1 + α2) is small (be-
cause we set ε to be small), but λ log2 T = O(1), and
sum up ladder series of λ log2 T terms, neglecting smaller
powers of logarithms at each order of loop expansion.
Performing the calculations (see Supplementary mate-
rial for details), we find that the analogy with CSC does
not extend beyond leading order: for CSC the summa-
tion of λ log2 T terms yields Φ = Φ0/ cos[(2λ log

2 T )1/2]
(Ref.[15]), and the system develops a pairing instabil-
ity at | logTc| = π/2

√
2λ (Ref. [16]). In our case, per-

turbation series yield Φ = Φ0e
λ/2π log2 T , i.e., the pair-

ing susceptibility increases with decreasing T , but never
diverges. Because the summation of the leading loga-
rithms does not lead to a finite Tc, one has to go beyond
the leading logarithmical approximation and analyze the
full equation for Φ(k) at Φ0 = 0 in order to understand
whether or not Tc is finite at a QCP. This is what we do
next.
Full gap equation. Within our approximation, the full

linearized equation for the anomalous vertex is obtained
by summing up ladder diagrams and keeping the self-
energy in the fermionic propagator. Integrating the r.h.s.
of this equation over momenta transverse to the FS, we
obtain

Φ(ωm, k‖) =
3ḡ

2vF
T
∑

m′

∫ dk′‖

2π

Φ(ωm′ , k
′

‖)

|ωm′ +Σ(ωm′ , k
′

‖)|

× 1

k2‖ + k
′2
‖ − 2µk‖k

′

‖ + γ|ωm − ωm′ | (5)

where µ = (1− α2)/(1 + α2). The temperature at which
the solution exists is Tc. The overall factor 3ḡ/(2vF ) is
eliminated by rescaling and get replaced by λ, which, we
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FIG. 2: Numerical solution of Eq. (6) at small ε. (a) The
transition temperature. When ε decreases, ε log ω0/Tc ap-
proaches 1, as in Eq. (8). (b) The eigenfunction Φ(y), where
y = k2

‖/(πTγ). Solid and dashed lines are numerical and an-
alytical solutions of Eq. 6, respectively. The two are very
close, except for the largest y ∼ ω0/T , when the cutoff be-
comes relevant.

recall, we treat as a small parameter. One can verify
that typical k2‖ are larger than typical γωm, and that

the vertex Φ(ωm, k‖) has a stronger dependence on k‖
than on frequency. In this situation, one can approximate
Φ(ωm, k‖) by Φ(k‖), explicitly sum up over frequency and
reduce (5) to 1D integral equation.
For simplicity, we first consider the case when α = 1,

i.e λ = ε. Introducing T̄ = πT/ω0 and x = k2‖/(γω0T̄ ),

we obtain from (5)

Φ(y) =
ε

π

∫

1

dx

x+ y

log x

2
√
xT̄ + 1

Φ(x) (6)

The term in the denominator with
√
xT̄ is a soft upper

cutoff.
The r.h.s. of (6) contains log2 contributions from the

range x ≫ y, but, as we just found, they do not lead to
a pairing instability. We therefore focus on the contribu-
tion from x ∼ y. Because the kernel is logarithmical, we
search for Φ(x) in the form Φ(x) = exp[−f(p(x))], where
p(x) = ε log x. Substituting this into (6), we find that
the form is reproduced at 1 ≪ x ≪ 1/T̄ , when soft cut-
off can be omitted. The self-consistency condition yields
(see Supplementary material)

f(z) =
1

πε

(

z arcsin z +
√

1− z2 − 1
)

. (7)

At small ε, the soft cutoff can be replaced by the bound-
ary condition that df(z)/dz must be at a maximum at
z = ε| log T̄ |. This condition sets

Tc ∼ ω0e
−1/ε. (8)

To verify this reasoning, we solved Eq. (6) numerically
and found very good agreement with analytical results
(see Fig.2).
We next analyze the gap equation at α 6= 1 Using the

same logic as before we find (see Supplementary material
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for details) that Eq. (8) does not change, i.e., to loga-
rithmical accuracy, Tc/ω0 does not depend on the angle
between Fermi velocities at kF and k + Q. We verified
the independence of Tc/ω0 on α by solving Eq. (6) nu-
merically for different α.
We see from (8) that Tc is non-zero already at infinites-

imally small coupling, like in BCS theory. The analogy is
not accidental as the pairing predominantly comes from
momenta away from hot spots, for which x ∼ y ∼ T̄ , i.e.,
k‖ ∼ k⊥ ∼ (γω0)

1/2. Because Tc ≪ ω0, typical γω ≥ γTc
are much smaller than γω0, hence fermionic self-energy
for k‖ ∼ (γω0)

1/2 has the FL form Σ(ωm, k‖) ∝ ωm/|k‖|.
Furthermore, for x ∼ y in (6), the integration over x does
not give rise to an additional logarithm besides log x,
which is a Cooper logarithm. The instability at Tc is
then a conventional Cooper instability of a FL with a
weak and non-singular attractive coupling ε. In other
words, for small ε, the pairing at a SDW QCP is entirely
a FL phenomenon.
Although Eq. (8) looks like BCS formula, the problem

we are solving is not a weak-coupling pairing by a static
attractive interaction. We emphasize in this regard that
a non-zero Tc at small ε is the consequence of the de-
pendence of the self-energy on the momenta along the
FS. Earlier works [8, 9] neglected this momentum depen-
dence and approximated the self-energy by its non-FL
form Σ(ω) = ωm(ω0/|ωm|)1/2 at a hot spot. These stud-
ies found a different result: Tc at an AFM QCP becomes
non-zero only if ε exceeds a certain threshold, like in the
pairing problem at a QCP with q = 0 (Refs.[13, 27]).
Specifically, for Σ = Σ(ωm), the anomalous vertex Φ also
depends only on frequency, and Eq. (5) reduces to 1D
integral equation in frequency rather than in momentum:

Φ(ωm) =
πεT

2

∑

m′ 6=m

Φ(ωm′)
√

|ωm′ |Zωm′

√

|ωm − ωm′ |
. (9)

where Zωm′ = 1 +
√

|ωm′ |/ω0. This equation has been
solved for arbitrary ε [8], and the result is that Tc
becomes non-zero only when ε exceeds a critical value

εc = 0.22. Near critical coupling Tc ∼ ω0e
−3.41/(ε−εc)

1/2

,
and for ε = 1, Tc = 0.17ω0.
Tc at moderate coupling. For the actual physical

case ε = 1 we solved Eq. 5 numerically and found that
the behavior of Tc(α) is very similar to that at small ε.
Namely, Tc scales with ω0 and the prefactor is essentially
independent on α as long as α≫ ḡ/EF . We obtained

Tc ≈ 0.04ω0. (10)

For ε = 1, typical (αk‖)
2 ∼ γω0 and typical γω ∼ γTc

are now comparable, i.e., for ε = 1 the pairing comes
from fermions whose self-energy is in a grey area be-
tween a FL and a non-FL. We checked this by solving
for Tc using the two limiting forms of the self-energy in
Eq. (2) – the non-Fl Σ(ωm) right at a hot spot (this gives

Tc ∼ 0.17ω0) and the FL form Σ(ωm, k‖) ∝ ωm/k‖ (this
gives Tc = 0.005ω0). The actual Tc given by Eq. (10) is in
between the two limits. We also verified (see Supplemen-
tary material) that in the extreme case of strong nesting,
when α exceeds (ḡ/EF ), the momentum dependence of
the self-energy becomes irrelevant for all k‖ along the FS,
and Tc crosses over to Tc ∼ 0.17ω0.

The linearized gap equation has been previously solved
numerically along the full FS, without restriction to hot
spots [21]. In notations of Ref. [21], Tc = (vF /a)f(u),
where dimensionless u = 4ω0a/(3vF ). Eq. (10) implies
that f(u) = 0.03u at small u. This agrees well with
the numerical solution in [21]. At larger u ≥ 1/2, f(u)
saturates at around 0.015 − 0.02 (Refs. 21, 28), and at
larger u decreases as 1/u because of Mott physics.

Conclusions. In this paper we analyzed the equa-
tion for superconducting Tc at the onset of SDW order
in a 2D metal. We demonstrated that the leading per-
turbation correction to the bare pairing vertex contains
log2 T , but the series of log2 T renormalizations do not
give rise to the pairing instability. Yet, Tc is finite, even
when coupling λ is artificially set to be small, because
of subleading, logT terms. We showed that for physical
λ = O(1), the pairing at a QCP comes from fermions
with both FL and non-FL forms of the self-energy. The
overall scale of Tc is set by the interaction (ω0 ∼ ḡ), as
long as the interaction is smaller than the Fermi energy,
and the prefactor is essentially independent on the details
of the geometry of the FS.

The issue which requires a further study is how ro-
bust these results are with respect to feedback effects
from pairing fluctuations on the fermionic and bosonic
propagators. These feedbacks are quite relevant in the
RG-based studies [22–25]. In the spin-fermion model,
the corrections from the pairing channel come from di-
agrams with n ≥ 4 loops and are not small in 1/N .
These corrections preserve the Landau-overdamped form
of the bosonic propagator and the ω/k‖ form of the
fermionic self-energy, but may contribute additional loga-
rithm log k2‖/(γ|ω|) to Σ (see Ref. [20] and Supplementary

material). The argument of the logarithm is, however,
of order one for typical k‖ and ω in the calculations of
Tc, hence we expect that the feedbacks from the pairing
channel will at most change the prefactor for Tc but do
not change our two main conclusions that (i) Tc scales
with ω0, and (ii) in the physical case the pairing involves
fermions with both FL and non-FL forms of the self-
energy. It is very likely that the same conclusions can be
reached within RG-based approaches as the results of the
RG analysis are generally comparable to those obtained
in the spin-fermion model [25].

We acknowledge stimulating discussions with Y.B.
Kim, S.S. Lee, M.A. Metlitski, S. Sachdev, T. Senthil,
and A-M Tremblay. The research has been supported by
DOE DE-FG02-ER46900.
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and A. V. Chubukov, Phys. Rev. B 74, 195126 (2006); T.
Senthil, Phys. Rev. B 78, 035103 (2008); M. Zacharias,
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