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Epitaxial circuitry offers a revolution in silicon technology, with components that can be fabricated
on atomic scales. We perform the first ab initio calculation of atomically thin epitaxial nanowires
in silicon, investigating the fundamental electronic properties of wires two P atoms thick, similar to
those produced this year by Weber et al. For the first time, we catch a glimpse of disorder-related
effects in the wires – a prerequisite for understanding real fabricated systems. Inter-wire interactions
are made negligible by including 40 monolayers of silicon in the vertical direction (and the equivalent
horizontally). Accurate pictures of band splittings and the electronic density are presented, and for
the first time the effective masses of electrons in such device components are calculated.

PACS numbers: 85.35.Be, 73.21.Hb, 85.30.De

After decades of relentless miniaturization, nanoelec-
tronic devices fabricated epitaxially, atom by atom, have
given us a glimpse of the end of Moore’s Law for silicon
nanoelectronics. Epitaxially doped circuitry fabricated
via the STM lithography technique [1] offers atomically-
precise control of donors [2, 3], and has improved steadily
over the past decade, from basic devices [4, 5] through
specialized nanodots [6] and nanowires [7], to a seven-
donor quantum dot [8], all doped into a single mono-
layer. Recent advances include a single-atom transis-
tor [9] and high-conductance nanowires just a few atoms
wide [10]. Although single-donor physics is well-known,
and that of 2D devices relatively so, in the intermedi-
ate nanowire regime ab initio understanding (essential
to guide multi-scale device modeling) is lacking. The re-
alization of nanocircuitry confined to atomic dimensions
both vertically and laterally is of much interest to the
spintronics [11, 12] and quantum information processing
[13–15] communities.

Theoretical descriptions of these epitaxial systems have
improved, with descriptions of infinite δ-doped layers us-
ing effective mass theory (EMT) [16], planar Wannier
orbitals [17], tight-binding (TB) [18, 19], and ab initio
density functional theory (DFT) [20–22]. All of these,
however, focus on two-dimensional layers without fur-
ther patterning (although some consider quasi-disorder
via the supercell approximation [20, 21]). EMT [8] and
self-consistent TB (scTB) [10] are the forefront of de-
vice modeling efforts. To date, ab initio treatments – an
important base for higher-scale and effective methods –
have not been able to handle the relatively large volumes
involved in such structures.

This intermediate regime, combining high-density dop-
ing (with all its accompanying many-body physics), dual
confinement directions, and the large Bohr radius of P
donors in Si, presents several barriers to modeling ef-
forts. One of the most critical aspects of device design at
the atomic scale is knowledge of the effective electronic
width, which can be quite different to the lithographic

FIG. 1: Valley physics, from bulk (a), via 2D with kz valleys
collapsing (red arrows) to Γ [16–22] (b), rotating by 45◦ to
quasi-1D confinement with kx,y valleys collapsing (purple ar-
rows) onto [110] away from Γ (forming ∆ valleys) (c); devices
using bulk physics (d), 2D (e), and quasi-1D confinement (f).

width. This dictates much of the device behavior and
scaling. Also of major interest are the Fermi level and
bandstructure, especially with respect to the number of
conducting modes, and the utility of the typical EMT
valley picture (see Fig. 1). All of these can be gleaned
from ab initio calculations, although the supercell sizes
required to adequately describe the electronic width are
formidable. Ab initio work also provides information
guiding the progress of higher-level effective treatments
such as the scTB method, or EMT.

The difficulty in describing one-dimensional structures
within the supercell approximation is that the super-
cell must be correspondingly large in two dimensions,
rather than the one dimension sufficient for δ-doped lay-
ers [20, 22, 23]. The combination of a quadratic increase
in the number of atoms being considered with size and
the usual N3 scaling of density functional theory leads
to a prohibitive L6 growth in calculation time as the Si
cladding (L) is increased about the wires. Using an ef-
ficient localized double-ζ with polarization (DZP) basis
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set previously benchmarked against a plane-wave tech-
nique [23], it is finally possible to rigorously describe
these large structures and obtain quantitative values for
various properties of these nanowires.

Here we use the ab initio method of [24] to model two-
donor-wide nanowires of monolayer-doped phosphorus in
silicon, such as those of [10]. Using methodology devel-
oped to describe infinite monolayer δ-layers [22, 23], we
calculate the properties of wires with 5.5 nm of silicon
separating periodic images (see Supp. Mat.). We use
bandstructures to find energy differences between occu-
pied levels in the gap, including the valley splitting of the
Γ bands, which can manifest experimentally as transport
spectroscopy resonance series [8]. We subsequently derive
and calculate anisotropic effective masses for electrons in
such wires, finding results comparable to those for bulk
Si and for δ-layers. We then study the electronic extent
of these wires away from the donors.

Experimental structures of this type are currently built
on (001) terraces of Si, patterned along or perpendicu-
lar to the well-known [110] and [11̄0] Si dimer rows [8].
Once built, they are epitaxially coated with several nm
of Si, and thus the P donors, which are substitutional in
the lattice, return to the usual regular atomic spacing of
bulk Si (001) planes, rather than the distorted dimer row
positions found at the surface. In our model, we enforce
periodic boundary conditions well before the surface re-
gion, therefore avoiding any potential complications from
surface states. The location of the P donors has previ-
ously been shown to be negligibly different from Si lattice
positions [20, 22], and is treated as such here. The most
common experimental doping is 1 P atom to every four
lattice sites in the monatomic plane (1/4 monolayer cov-
erage) [8, 10], and we model wires of this density.

The random nature of the experimental in-plane PH3

adsorption can lead to several dopant arrangements. The
condition that four mutually adjacent sites be vacant
means that, as in [10], a strip at least four Si-H bonds
wide must be de-masked for a two-donor-wide wire to
form. The regular case is one possible outcome of dop-
ing such a strip. Others include the staggered layout
considered in [10], and also similar positioning with the
separation increased by one atomic site. In each case, the
use of periodic boundary conditions dictate that these are
perfectly ordered along the wire once the transverse ge-
ometry is selected, and extension to consider disorder in
this direction is utterly intractable with today’s ab initio
methods. Here, we briefly consider the staggered case
for direct comparison to [10], and proceed to a detailed
analysis of the regular nanowire which is more similar to
the 2D δ layers considered in [20–22].

40-monolayer (ML) silicon supercells 6.17×5.46×0.77
nm3 are presented here. P donors were substituted in
positions as shown in Fig. 2, 0.86 nm (diagonally) apart
in the staggered arrangement, or 0.77 nm apart in the
regular 1/4 ML coverage [20–23]. The cells were designed

FIG. 2: (Color online) Placement of dopants in a 40 ML cell
and on the top (001) face; P donor positions in staggered (yel-
low triangle) and regular (red circle) arrangements, Si atoms
coplanar with the dopants (white circles), surrounding bulk
Si (grey shaded area), periodic boundaries (solid lines).
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FIG. 3: Bandstructure of staggered nanowire in a 40 ML
cell, by DFT and scTB (graphically estimated from [10]) with
DFT energy zero set to the VBM and scTB results aligned at
the Fermi level. The bandstructures run to the orthorhombic
Brillouin zone X point at 1/

√
8 2π/a in the [110] k-direction.

to provide as similar an amount of cladding about the P
as possible, and represent the smallest possible repeating
units for 1/4 ML P distribution along the wire.

The bandstructure of the staggered wires is presented
in Fig. 3. The scTB equivalent, graphically estimated
from [10], is also shown, mirrored at BZ boundaries due
to the longer scTB supercell (spurious bands replicated
by boundary conditions have been removed). These agree
qualitatively for the two lowest bands (Γ1 and Γ2). The
third occupied band (∆) shows qualitative agreement to
the right of its crossing with Γ1, though there is a discrep-
ancy inside this location. The DFT ∆ band drops down
to a local minimum at Γ below the Fermi level while the
scTB band increases monotonically to a local maximum.
This may be due to self-interaction within our calculation
(intractable to correct for in such large supercells), or to
an avoided crossing with the artificially low conduction
band, though the general agreement is quite encouraging.

Having benchmarked our calculation against the stag-
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FIG. 4: Bandstructure of the regular 40 ML system.

gered case of [10] and via the methodology of [22, 23],
we now proceed to study the regular case mentioned
above. This is crucial, as it links to previous understand-
ing of two-dimensional δ-layer physics [17, 20–23]. We
find that the energy separations of the band minima are
well-converged (to within 5 meV), in line with [22]. The
bandstructure is displayed in Fig. 4, plotted from Γ to
X corresponding to the wire axis. Comparison with Fig.
3 highlights disorder-related effects due to changes to the
doping pattern. Due to the orthorhombic nature of the
supercell, no other simple comparisons can be made to
the standard FCC bandstructure. The lowered symme-
try of our cell suggests two other paths with symmetry
higher than one; namely from Γ to Y or Z. Bands in
those directions are subject to extreme band folding (see
Appendix of [22]) and are not included here.

Three bands dip below the Fermi level; the lower two
have clear minima at Γ, and while the third displays a
minimum in the [110] direction, it also has a local mini-
mum at Γ which dips slightly below EF. The [110] min-
imum will of course have a symmetric pair valley in the
[1̄1̄0] direction. We therefore predict four channels to be
open for conduction along the wire. Unlike the staggered
case discussed above, the Γ1 band does not display a sec-
ond minimum in the ∆ direction.

The energy splittings between the bands are an im-
portant link to observable effects, as they may give rise
to splittings seen between resonances in transport spec-
troscopy. As discussed in [8], energy levels both in a
quantum dot, and in the wires leading to/from it, must
be considered in such experiments. Here, we find the Γ1-
Γ2 splitting is 117 meV, Γ1-∆ (at the ∆ minimum) is 164
meV, Γ1-∆ (at the Γ point) is 180 meV, and from the Γ1

minimum to the Fermi level is 183 meV (from Fig. 4).

Similarly, conduction electrons’ effective mass is an-
other useful parameter. Here, according to EMT, we fit
parabolae to band minima. The curvature a is directly
related to m∗ by ~2k2/2mem

∗ = a. Again, the lower two
bands behave in a fashion consistent with general expec-
tations; as these bands are explicitly Γ bands, occuring
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FIG. 5: (Color online) Bandstructure for regular 40 ML cell,
zoomed in on states in the bandgap to fit effective masses.

as a result of z-valley projection onto Γ due to verti-
cal confinement, we expect their physics to be governed
by the transverse effective mass mt ∼ 0.21 [17]. Figure
5 shows DFT-generated band minima and correspond-
ing least-squares parabolic fit curves (fit by truncating
at increasing numbers of points until

∣∣1− χ2
r

∣∣, and hence
the standard error, were minimized). Agreement is very
good, with χ2

r values of over 0.93 for points near the
minima. Analysis of the curvature of the first band gives
mt=0.200±0.001, falling in between the δ-layer PWO re-
sults of [17], and the experimental bulk Si value of 0.1905.
The second band gives mt=0.219±0.001, which is slightly
heavier than [17] suggests for δ-layers, but is likely sim-
ilar enough to the first band that EMT treatments, for
example, need not distinguish between them.

The x- and y-valleys, which also occur in the {100}
directions, are projected onto the [110] axis due to the
horizontal confinement (along x=y; see Fig. 1). This
projection leads to a 1/

√
2 contraction of the valley as

we see it, or an effective doubling of its curvature. Re-
versing this projection effect leads to an estimate of the
longitudinal effective mass of 0.931±0.019, in agreement
with the bulk Si experimental value (0.9163) and with
[17] (0.95). The parabolic fit has a χ2

r value of over 0.91.

Knowledge of the anisotropic effective mass is essen-
tial for longer-scale modeling techniques such as effective
mass theory, or tight-binding procedures, which rely on
it as a pivotal input to multiscale calculations which are
more capable of describing actual devices. We can now
confirm that, despite the effects of extreme confinement,
the parabolic assumption holds, and that the effective
masses are close enough to bulk values to be included in
these techniques without modification.

To assess the electronic cross-section of the wire, we
integrated the local density of states between the valence
band maximum and EF. For display purposes, we aver-
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FIG. 6: (Color online) False-color representation of the
electronic extent of a regular two-atom epitaxial [110] Si:P
nanowire in a 40 ML cell. Integrated local density of states
profiles, averaged along (a) [11̄0], (b) [110], and (c) [001], are
shown, normalized to their highest values. The white ellipse
is a simple two-parameter description of the region within
which the wavefunction modulus exceeds 1/e of the maximum
attributed to one Si-P bond. A color scale is also shown.

aged along the [11̄0] (Fig. 6a), [110] (Fig. 6b), and [001]
directions (Fig. 6c). The density is primarily found near
the donors, in the bonds between them and the surround-
ing Si. The especial height of the two peaks in Fig. 6b
is due to the alignment of two bonds from each P atom
along the averaging direction. We therefore take 50% of
the actual peak value as representative of the peak den-
sity corresponding to one Si-P bond.

A simple two-parameter model has been constructed
and empirically fit to the wavefunction modulus falloff
(see Supp. Mat. for more details):

YN = (Nr +D/2)cos(θ),

ZN = gNr sin(θ),
(1)

where N is the number of 1/e factors of falloff from the
maximum value, D is the separation of the two donors
(∼0.77 nm), and r and g are parameters corresponding
to a radius (0.55 nm) and a vertical scaling factor (1.20).
The N=1 fit shown in Fig. 6b is smaller than that of [10],
with a cross-section of 1.88 nm2, and density fluctuations
are less than 1% of the bond peak value by ±2.0 nm along
[11̄0] and ±1.5 nm along [001]. The extra width is due
to the donor separation across the wire. The electron
density is very slightly biased towards the center of the
wire, and is easily explained by the presence of the second
donor.

Figure 7 shows the electronic density of states evalu-
ated over the full Brillouin zone. The valence band can
be seen at left, dropping away to the bandgap (zero den-
sity). The bulk conduction band is at the extreme right.
In between, we see the electronic density of states of the
three occupied bands in the gap. We have a clear predic-
tion that the wire should be conducting, as there is no
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FIG. 7: Electronic density of states of a regular 40 ML cell.
50 meV Gaussian smearing has been applied for visualisation.

zero-density region near the Fermi level.

We have performed the first ab initio calculations of
Si:δP nanowires atomically confined both vertically and
laterally, for staggered and regular layouts, observing
disorder-related changes to the bandstructure. The wires
are two donors wide by one high, specially placed to
ensure a doping density of 1/4 ML. The P ionic cores
provide extreme confinement in anisotropic fashion due
to their placement. Qualitative agreement with the re-
cent staggered pattern scTB results of [10] is encourag-
ing, supporting their new multiscale technique which can
handle larger device volumes. Bandstructure and Fermi-
level analysis show considerable donor placement effects,
and leads us to predict four open conduction channels;
two each governed by the transverse and longitudinal ef-
fective masses, which have been calculated and matched
explicitly to bulk values – essentially linking classical de-
vice understanding to these novel single-atom defined na-
noelectronic devices and their function, and confirming
the utility of the effective mass approximation on these
atomic scales. Further, approaches which explicitly as-
sume these values as inputs (EMT, TB) now have vali-
dation for this axiom. Connection to previous ab initio
models with one dimension of confinement is made via
the regular model, and is thoroughly explored, includ-
ing the development of a simple two-parameter model
describing the falloff of the wavefunction modulus.
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