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Using ultracold alkaline-earth atoms in optical lattices, we construct a quantum simulator for
U(N) and SU(N) lattice gauge theories with fermionic matter based on quantum link models. These
systems share qualitative features with QCD, including chiral symmetry breaking and restoration
at non-zero temperature or baryon density. Unlike classical simulations, a quantum simulator does
not suffer from sign problems and can address the corresponding chiral dynamics in real time.

Introduction. Non-Abelian gauge fields play a central
role in the dynamics of the Standard Model of particle
physics. In particular, the strong SU(3) gauge interac-
tions between quarks and gluons in Quantum Chromody-
namics (QCD) give rise to the spontaneous breakdown of
the chiral symmetry of the light quarks. Heavy-ion col-
lisions produce a high-temperature quark-gluon plasma
in which chiral symmetry is restored. The deep interior
of neutron stars contains high-density nuclear matter or
even quark matter, which may be a baryonic superfluid
or a color superconductor [1]. Unfortunately, due to se-
vere sign problems, the real-time evolution of heavy-ion
collisions or the phase structure of dense QCD matter is
inaccessible to first principles classical simulation meth-
ods. In condensed matter physics strongly coupled gauge
theories play a prominent role in strongly correlated sys-
tems. In particular, the non-Abelian SU(2) variant of
quantum spin liquids has long been debated as a pos-
sible connection between the doped Mott insulator and
the high-Tc superconducting phase in cuprates [2]. The
challenge of solving such problems motivates the devel-
opment of quantum simulators for non-Abelian lattice
gauge theories. Recently, quantum simulators have been
constructed for Abelian U(1) gauge theories with [3–5]
and without coupling to matter fields [6, 7]. Here, we con-
struct a quantum simulator of U(N) and SU(N) strongly
coupled lattice gauge theories in (1 + 1), (2 + 1), and
(3 + 1)D using ultracold alkaline-earth (AE) atoms in an
optical lattice. On the one hand, our approach is based
on quantum link models (QLMs) [8–10], which allow the
exact embodiment of non-Abelian gauge interactions in
ultracold matter. On the other hand, we utilize funda-
mental symmetries of matter, such as the SU(2I + 1)
invariance of interactions between fermionic AE isotopes
such as 87Sr or 173Yb [11–20]. While still being far from
a quantum simulator for full QCD, simpler model sys-
tems share several qualitative features, including confine-
ment, chiral symmetry breaking (χSB), and its restora-
tion (χSR) [1]. They provide a unique environment to
investigate important dynamical questions which are out
of reach for classical simulation.

The non-perturbative physics of non-Abelian gauge
theories is traditionally addressed in the context of Wil-
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FIG. 1. [Color online] a) (upper panel) U(N) QLM in (1+1)D
with quark fields ψi

x on lattice sites and gauge fields U ij
x,x+1

on links; (lower panel) hopping of AE atoms between quark
and rishon sites of the same shading. b) Implementation of
the QLM in rishon representation with fermionic atoms in
(2 + 1)D. c) Encoding of the color degrees of freedom for
N = 2 (↑, ↓) in Zeeman states of a fermionic AE atom with
I = 3/2. d) Lattice structure to avoid the interaction in
fermionic matter sites using a species-dependent optical lat-
tice (for an alternative method using site-dependent optical
Feshbach resonances see the main text). e) Initial state loaded
in the optical lattice with a staggered distribution of doubly
occupied sites for a U(2) QLM with N = 2.

son’s lattice gauge theory [21], in which the gluon field
is represented by parallel transporter matrices residing
on the links connecting neighboring lattice points of a
4D space-time lattice. Since Wilson’s classical link vari-
ables take values in the continuous gauge group SU(N),
the corresponding Hilbert space is infinite-dimensional
even for a single link. The elements of a quantum link
matrix are non-commuting operators, similar to the com-
ponents of a quantum spin. As a result, QLMs have a
finite-dimensional Hilbert space, and therefore provide
an attractive framework for the construction of quan-
tum simulators for dynamical Abelian and non-Abelian
gauge theories. In the continuum limit of QLMs, which
is naturally realized via dimensional reduction, one re-
covers QCD with chiral quarks as domain wall fermions
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[22, 23]. A pedagogical introduction to QLMs, together
with an extensive explanation of the corresponding ter-
minology, is contained in the supplementary information
(SI) [24].

Quantum Link Models. The hopping of electrons be-
tween lattice sites x and y in an external magnetic back-
ground field ~B = ~∇× ~A is described by ψ†xuxyψy, where

uxy = exp(i
∫ y

x
d~l · ~A) ∈ U(1) is the phase picked up in

this process [25]. In particle physics, gauge fields ap-
pear as dynamical quantum degrees of freedom, not just
as classical background fields. Here we consider U(N)
and SU(N) lattice gauge theories without approaching
the continuum limit, using so-called staggered fermions,
which are represented by creation and annihilation oper-
ators ψi†

x and ψi
x, that obey standard anti-commutation

relations. Here i ∈ {1, 2, . . . , N} represents the non-
Abelian color index of a quark. The fundamental gauge
degrees of freedom representing the gluon field are N×N
matrices Uxy (with elements U ij

xy) associated with the link
between nearest-neighbor points x and y (c.f. Fig.1a).
The hopping of a quark, which exchanges color with the
gluon field, is then described by ψ†xUxyψy = ψi†

x U
ij
xyψ

j
y.

This term is invariant against gauge transformations,
Ωψx = Ωxψx, Ωψ†x = ψ†xΩ†x,

Ω Uxy = ΩxUxyΩ†y, with
Ωx ∈ U(N). The SU(N) gauge transformations and the
additional U(1) gauge transformation contained in U(N)
are generated by

Ga
x = ψi†

x λ
a
ijψ

j
x +

∑

k

(
La
x,x+k̂

+Ra
x−k̂,x

)
,

Gx = ψi†
x ψ

j
x −

∑

k

(
Ex,x+k̂ − Ex−k̂,x

)
, (1)

where k̂ is a unit-vector in the k-direction, λa (a ∈
{1, 2, . . . , N2 − 1}) are the SU(N) Gell-Mann matrices,
and fabc are the SU(N) structure constants, such that
[Ga

x, G
b
y] = 2iδxyfabcG

c
x. The operators La

xy and Ra
xy

represent SU(N) electric field operators associated with
the left and right end of a link 〈xy〉, while Exy represents
the Abelian U(1) electric field operator. Physical states
|Ψ〉 obey the SU(N) Gauss law Ga

x|Ψ〉 = 0, while in a
U(N) gauge theory also Gx|Ψ〉 = 0. The operators U ,
La, Ra, and E associated with the same link obey

[La, Lb] = 2ifabcL
c, [Ra, Rb] = 2ifabcR

c,

[La, Rb] = [E,La] = [E,Ra] = 0,

[La, U ] = −λaU, [Ra, U ] = Uλa, [E,U ] = U, (2)

while operators associated with different links commute.
In Wilson’s lattice gauge theory, U is an element of the

gauge group. In a U(N) gauge theory, detU = exp(iϕ) ∈
U(1) represents a U(1) link variable, canonically conju-
gate to the electric flux operator E = −i∂ϕ. In an SU(N)
gauge theory U ∈ SU(N) and La, Ra take appropri-
ate derivatives with respect to the matrix elements U ij .
The resulting Hilbert space per link is then unavoidably

infinite-dimensional. In order to represent the commuta-
tion relations of the gauge algebra of Eq.(2) in a finite-
dimensional Hilbert space, QLMs give up the commuta-
tivity of the matrix elements U ij without compromising
gauge invariance. The real and imaginary parts of the
matrix elements U ij of the N ×N quantum link matrix
are represented by 2N2 Hermitean operators. Together
with the electric field operators La, Ra, and E these are
2N2 + 2(N2 − 1) + 1 = (2N)2 − 1 generators which form
the embedding algebra SU(2N). While U(1) quantum
links can be represented by quantum spins embedded in
an SU(2) algebra, U(N) or SU(N) QLMs can be real-
ized with different representations of SU(2N). A useful
representation is based on fermionic rishon constituents
[23]

La = ci†+λ
a
ijc

j
+, R

a = ci†−λ
a
ijc

j
−, E =

1

2
(ci†−c

i
− − ci†+ci+),

U ij = ci+c
j†
− , N = ci†−c

i
− + ci†+c

i
+. (3)

The rishon creation and annihilation operators, ci†± and
ci±, are associated with the left and right ends of a link
(c.f. Fig.1a) and obey standard anti-commutation rela-
tions. Our construction of a quantum simulator for U(1)
gauge theories used Schwinger bosons to represent quan-
tum links [3]. Here it is natural to replace Schwinger
bosons by rishon fermions. N counts the number of ris-
hons on a link.

The Hamiltonian of a (d+ 1)D U(N) QLM with stag-
gered fermions takes the form

H = −t
∑

〈xy〉

(
sxyψ

i†
x U

ij
xyψ

j
y + h.c.

)
+m

∑

x

sxψ
i†
x ψ

i
x

= −t
∑

〈xy〉

(
sxyQ

†
x,+kQy,−k + h.c.

)
+m

∑

x

sxMx, (4)

where sx = (−1)x1+···+xd and sxy = (−1)x1+···+xk−1 ,

with y = x + k̂. t is the strength of the hopping term,
and m is the mass. The summation convention is im-
plicit in the color indices. We have also introduced the
U(N) gauge invariant “meson” and “constituent quark”

operators Mx = ψi†
x ψ

i
x and Qx,±k = ci†x,±kψ

i
x. Together

with the “glueball” operators Φx,±k,±l = ci†x,±kc
i
x,±l, they

form a site-based U(2d+ 1) algebra. The rishon number
is conserved locally on each link. The U(N) model has
no baryons, since the U(1) baryon number symmetry is
gauged. In order to obtain charge conjugation invari-
ance C and to reduce the gauge symmetry to SU(N),
one must work with Nxy = N rishons per link. Adding
the term γ

∑
〈xy〉(detUxy + h.c.) to the Hamiltonian, ex-

plicitly breaks the U(N) gauge symmetry down to a lo-
cal SU(N) and a global U(1) baryon number symme-
try generated by B =

∑
x

(
ψi†
x ψ

i
x − N

2

)
. The symme-

tries of various model systems are summarized in Table
1 of the SI. All models have a Z(2) chiral symmetry,



3

which is spontaneously broken at a critical temperature
Tc, and may get restored at non-zero baryon density nB .
It would be natural to add electric and magnetic field en-

ergy terms g2

2

∑
〈xy〉

(
La
xyL

a
xy +Ra

xyR
a
xy

)
, g′2

2

∑
〈xy〉E

2
xy,

and 1
4g2

∑
〈wxyz〉 (UwxUxyUyzUzw + h.c.), where 〈wxyz〉

denotes an elementary plaquette with g2 and g′2 as the
coupling constants. At strong coupling these terms are
inessential for qualitative features of the dynamics at fi-
nite temperature or baryon density, and are thus not yet
included in our implementation.

Atomic quantum simulation of U (N ) QLMs. An il-
lustration of the QLM and its rishon representation for
(1+1)D and (2+1)D is provided in Fig.1. Quark fields ψi

x

reside on the lattice sites x, while the rishons cix,±k are
on “link-sites” (x,±k) at the left (right) end of the links
exiting (entering) the point x (c.f. Fig.1a lower panel).
The key step in our physical implementation is to inter-
pret the lattice with quark and rishon sites in Figs.1a,b
as a physical optical lattice for fermionic atoms. Hence,
an atom on site x of the optical lattice represents a quark
ψi
x, while hopping of this atom to a link-site (x,±k) con-

verts it to a rishon cix,±k. The color index i is encoded
in internal atomic states.

The basic building blocks in our atomic setup are
the tunnel-coupled triple-wells in (1+1)D (Fig.1a) or the
cross-shaped vertices in (2+1)D (Fig.1b). The corre-
sponding hopping dynamics of the atoms is described by
the Hamiltonian hx,k = t̃(sxyQx,+k+Qx,−k+h.c.). Phys-
ically, the overlap of the Wannier wave functions can be
used to implement the usual tunneling [26]. In case dif-
ferent phases are needed to simulate staggered fermions
in the lattice, Raman assisted tunneling [25] or shaken
optical lattices [27, 28] can be applied. In order to ob-
tain the desired quark-rishon dynamics, we introduce the
microscopic atomic Hamiltonian

H̃ = U
∑

〈xy〉
(Nxy − n)2 +

∑

x,k

hx,k +m
∑

x

sxMx. (5)

The first term enforces the constraint of Nxy = n ris-
hons per link, with U � t̃. In a physical setup, this is
implemented as a strong repulsion between atoms occu-
pying rishon-sites, indicated in Fig.1a by the overlapping
link-sites, and by a potential off-sets in the rishon sites.
Details on the lattice structure are discussed in the SI.
The second term represents atomic hopping, while the
last term realizes the staggered fermion mass with a su-
perlattice. In second order perturbation theory in the
tunnel-coupling, the above Hamiltonian induces the hop-
ping term of Eq.(4) with t = t̃2/U . Fig.2a illustrates the
matter-gauge interaction. We note that an additional
term t

∑
x,±kQ

†
x,±kQx,±k is also generated. This is no

problem, because this term is invariant under all rele-
vant symmetries. It is also possible to add a 4-fermion
term V

∑
xM

2
x .

With the Hamiltonian of Eq.(5) we have reduced the

det Uxy

x + 1xb)a)

 †
xcx,+c†

x+1,� x+1

x + 1x

| "i| #i � | #i| "i

FIG. 2. [Color online] Dynamical processes in U(2) QLMs
with N = 2. a) Matter-gauge interaction as correlated hop-
ping of quarks and rishons. Starting with a configuration of
site-singlets, the matter-gauge interaction converts them into
nearest-neighbor singlets, keeping the rishon number per link
constant. b) The determinant term corresponds to two-body
hopping of both rishons on the link.

realization of U(N) QLMs to a lattice dynamics of inter-
acting fermions. This is enabled by the factorization of
the quantum link variables into rishons. We emphasize
that the building blocks in H̃ are gauge invariant “me-
son” and “constituent quark” operators, which allows a
gauge invariant implementation of the dynamics. This is
in contrast to previous work, where Gauss’ law was en-
forced by an energy constraint in the microscopic dynam-
ics. The essential symmetries of H̃ to be respected by the
implementation are: (i) the color-independent hopping
of fermions and rishons, and (ii) the color-independent
interaction between rishons to ensure the local particle
number conservation on each link. Indeed these symme-
tries are accurately respected in setups with AE atoms
[11, 13, 20].

For a given nuclear spin I, the electronic ground state
1S0 of fermionic AE atoms has 2I + 1 Zeeman levels
mI = −I, . . . ,+I. We encode the color degrees of free-
dom for the even (odd) building blocks (triple-wells in
(1+1)D and cross-shaped vertices in (2+1)D, represented
by the light (dark) shading in Fig.1) in the N lowest
(highest) mI levels (c.f. Fig.1c). For example, to imple-
ment a U(2) QLM, we choose positive nuclear spin states
mI = 3/2, 1/2 on the even and negative nuclear spin
states mI = −3/2,−1/2 on the odd building blocks. The
AE atoms have the unique property that their scattering
is almost exactly SU(2I + 1)-symmetric, i.e., all pairs of
states have the same scattering length [11, 13, 20]. This
guarantees the symmetry of the U term in Eq.(5). The
mI -dependent hopping illustrated in Fig.1a can be real-
ized in optical lattices with an appropriate choice of laser
frequencies and polarizations [29, 30], or with optical po-
tentials obtained by holographic techniques [31, 32]. Fi-
nally, the repulsion U , which only affects the rishon- but
not the quark-sites, can be realized with optical Fesh-
bach resonances of AE atoms allowing spatially depen-
dent on-site interactions [33–39]. An alternative setup
uses mI -dependent optical lattices with overlapping sites
for the interacting, and spatially separated sites for the
non-interacting fermions (c.f. Fig.1d).
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SU(N) lattice gauge theories. We now reduce the
gauge symmetry from U(N) to SU(N) by activating the
detUxy term. For definiteness, we investigate the N =

N = 2 case, for which detUxy = 2c1x,+kc
1†
y,−kc

2
x,+kc

2†
y,−k.

This corresponds to two-particle tunneling between the
overlapping rishon-sites. As indicated in Fig.2b we as-
sume in our AE setup partially overlapping rishon-sites
implying a different overlap of the Wannier functions.
This generates a repulsive interaction energy, which dif-
fers by ∆U between rishons on the same and on differ-
ent link-sites, thus breaking the SU(2I + 1) symmetry.
The two-particle transfer is now implemented as a Ra-
man process with a Rabi frequency Ω and some large de-
tuning δ, so that single particle transitions are strongly
suppressed, while a two-particle transfer can be an energy
conserving process enabled by energy exchange between
the atoms (see also Ref. [40]). The resulting coefficient
of the detUxy term is γ = 2Ω2∆U/δ2, which should be
larger than the typical temperature scale in cold atoms
experiments.

Initial conditions, loading the optical lattice, and im-
perfections. We now discuss how to load the lattice with
the gauge invariant state illustrated in Fig.1e. This state
has local color-singlet pairs of atoms on alternating quark
and rishon sites. It is an eigenstate of the Hamiltonian

Hstrong = m
∑

x

sxψ
i†
x ψ

i
x + γ

∑

〈xy〉
(detUxy + h.c.) , (6)

which is induced by H̃ in the limit U → ∞. The
detUxy term favors the state | ↑↓, 0〉 − |0, ↑↓〉 where

| ↑↓, 0〉 = c↑†x,+c
↓†
x,+|0, 0〉 and |0, ↑↓〉 = c↑†y,−c

↓†
y,−|0, 0〉. The

preparation of the initial state requires to adiabatically
ramp up the optical lattice on an ultracold cloud of
atoms which are internally in a 50% mixture of the states
mI = 3/2, 1/2. This leads to a band insulator with two
atoms of positive nuclear spin on the dark-shaded sites
in Fig.1. Then, an on-site Raman two-body process will
generate the desired state of Fig.1e after a coherent trans-
fer of the rishon population from the dark- to the light-
shaded rishon-sites.

We have investigated the effect of imperfections in
the microscopic Hamiltonian on gauge invariance by per-
forming exact diagonalization of small system size U(2)
QLMs. The results, extensively discussed in the SI, show
how the system preserves gauge invariance even in the
presence of relatively large imperfections, of order 10%
of the original parameters. Moreover, we emphasize that
the low-energy, many-body properties of the system are
expected to be robust in the presence of small gauge vari-
ant terms (see for instance [41]).

Exact diagonalization results. We have performed ex-
act diagonalization studies of the (1 + 1)D U(2) model
with N = 1 rishon per link. Figure 3a shows the splitting
between two almost degenerate vacuum states, which de-
creases exponentially with the system size L, thus in-

a)

2 10 18
−6

−4

−2

0

L

log(∆E)

b)

2 4 6 8 10 12

0

0.5

1

x

(ψ̄ψ)x

FIG. 3. [Color online] a) Size L dependence of the energy
splitting between the lowest energy eigenstates of a U(2) QLM
with m = 0 and V = −6t. b) Real-time evolution of the order
parameter profile (ψψ)x(τ) for L = 12, mimicking the expan-
sion of a hot quark-gluon plasma. Here, circles (thin line),
diamonds (dashed line) and squares (dotted line) correspond
to τ/t = 0, 1, 10 respectively.

dicating Z(2) χSB. Figure 3b shows the real-time evo-
lution of the chiral order parameter profile (ψψ)x =
sx〈ψi†

x ψ
i
x − N

2 〉, starting from an initial chirally restored
“fireball” embedded in the chirally broken vacuum. This
dynamics can be observed by initializing the system in
a product state of Mott double wells, and subsequently
lower the lattice potential. This mimics the expanding
quark-gluon plasma generated in a heavy-ion collision,
and can be probed in an experimental setup by just mon-
itoring the time-dependence of the particle density, sim-
ilarly to Ref. [42].

Conclusions. We have proposed an implementation of
a quantum simulator for non-Abelian U(N) and SU(N)
gauge theories for staggered fermions with ultracold
atoms. The proposal builds on the unique properties
of quantum link models with rishons representing the
gauge fields: this allows a formulation in terms of a
Fermi-Hubbard model, which can be realized with multi-
component alkaline-earth atoms in optical lattices, and
where atomic physics provides both the control fields and
measurement tools for studying the equilibrium and non-
equilibrium dynamics and spectroscopy. Extending such
investigations towards QCD requires the incorporation
of multi-component Dirac fermions with the appropriate
chiral symmetries, and of additional link and plaquette
terms for electric and magnetic field energies [43].

Acknowledgments. We thank P. S. Julienne, B.
Pasquiou, and F. Schreck for discussions. Work at
Bern is supported by the Schweizerischer Nationalfonds.
Work at Innsbruck is supported by the integrated project
AQUTE, the Austrian Science Fund through SFB F40
FOQUS, and by the DARPA OLE program. Authors
are listed in alphabetical order.

Note: after the submission of this manuscript, two re-
lated works on SU(2) gauge theories in cold atomic sys-
tems have appeared on the arXiv preprint server [44, 45].
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