This is the accepted manuscript made available via CHORUS. The article has been published as:

Search for a Two-Higgs-Boson Doublet Using a Simplified Model in pp[over ${ }^{-}$] Collisions at sqrt[s]=1.96 TeV

T. Aaltonen et al. (CDF Collaboration)

Phys. Rev. Lett. 110, 121801 — Published 18 March 2013
DOI: 10.1103/PhysRevLett.110.121801

Search for a two-Higgs-boson doublet using a simplified model in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$

T. Aaltonen, ${ }^{22}$ J. Adelman,,${ }^{58}$ B. Álvarez González ${ }^{z},{ }^{10}$ S. Amerio, ${ }^{41}$ D. Amidei, ${ }^{33}$ A. Anastassov ${ }^{x},{ }^{16}$ A. Annovi, ${ }^{18}$ J. Antos, ${ }^{13}$ G. Apollinari, ${ }^{16}$ J.A. Appel, ${ }^{16}$ T. Arisawa, ${ }^{55}$ A. Artikov, ${ }^{14}$ J. Asaadi, ${ }^{50}$ W. Ashmanskas, ${ }^{16}$ B. Auerbach, ${ }^{58}$ A. Aurisano, ${ }^{50}$ F. Azfar, ${ }^{40}$ W. Badgett, ${ }^{16}$ T. Bae, ${ }^{26}$ A. Barbaro-Galtieri, ${ }^{27}$ V.E. Barnes, ${ }^{45}$ B.A. Barnett, ${ }^{24}$ P. Barria ${ }^{h h},{ }^{43}$ P. Bartos, ${ }^{13}$ M. Bauce ${ }^{f f},{ }^{41}$ F. Bedeschi, ${ }^{43}$ S. Behari, ${ }^{24}$ G. Bellettini ${ }^{g g},{ }^{43}$ J. Bellinger, ${ }^{57}$ D. Benjamin, ${ }^{15}$ A. Beretvas, ${ }^{16}$ A. Bhatti, ${ }^{47}$ D. Bisello ${ }^{f f},{ }^{41}$ I. Bizjak, ${ }^{29}$ K.R. Bland, ${ }^{5}$ B. Blumenfeld, ${ }^{24}$ A. Bocci, ${ }^{15}$ A. Bodek, ${ }^{46}$ D. Bortoletto, ${ }^{45}$ J. Boudreau, ${ }^{44}$ A. Boveia, ${ }^{12}$ L. Brigliadori ${ }^{e e},{ }^{6}$ C. Bromberg, ${ }^{34}$ E. Brucken, ${ }^{22}$ J. Budagov, ${ }^{14}$ H.S. Budd,,46 K. Burkett, ${ }^{16}$ G. Busetto ${ }^{f f},{ }^{41}$ P. Bussey, ${ }^{20}$ A. Buzatu, ${ }^{32}$ A. Calamba, ${ }^{11}$ C. Calancha, ${ }^{30}$ S. Camarda, ${ }^{4}$ M. Campanelli, ${ }^{29}$ M. Campbell,,${ }^{33}$ F. Canelli, ${ }^{12,16}$ B. Carls, ${ }^{23}$ D. Carlsmith, ${ }^{57}$ R. Carosi, ${ }^{43}$ S. Carrillo ${ }^{m},{ }^{17}$ S. Carron, ${ }^{16}$ B. Casal ${ }^{k},{ }^{10}$ M. Casarsa, ${ }^{51}$ A. Castro ${ }^{e e},{ }^{6}$ P. Catastini, ${ }^{21}$ D. Cauz, ${ }^{51}$ V. Cavaliere, ${ }^{23}$ M. Cavalli-Sforza, ${ }^{4}$ A. Cerri ${ }^{f},{ }^{27}$ L. Cerrito ${ }^{s},{ }^{29}$ Y.C. Chen, ${ }^{1}$ M. Chertok,,${ }^{7}$ G. Chiarelli, ${ }^{43}$ G. Chlachidze, ${ }^{16}$ F. Chlebana, ${ }^{16}$ K. Cho, ${ }^{26}$ D. Chokheli, ${ }^{14}$ W.H. Chung, ${ }^{57}$ Y.S. Chung, ${ }^{46}$ M.A. Ciocci ${ }^{h h},{ }^{43}$ A. Clark, ${ }^{19}$ C. Clarke, ${ }^{56}$ G. Compostella ${ }^{f f}$, ${ }^{41}$ M.E. Convery, ${ }^{16}$ J. Conway, ${ }^{7}$ M.Corbo, ${ }^{16}$ M. Cordelli, ${ }^{18}$ C.A. Cox, ${ }^{7}$ D.J. Cox, ${ }^{7}$ F. Crescioligg, ${ }^{43}$ J. Cuevas ${ }^{z},{ }^{10}$ R. Culbertson, ${ }^{16}$ D. Dagenhart,,16 N. d'Ascenzo ${ }^{w},{ }^{16}$ M. Datta, ${ }^{16}$ P. de Barbaro, ${ }^{46}$ M. Dell'Orso ${ }^{g g},{ }^{43}$ L. Demortier, ${ }^{47}$ M. Deninno, ${ }^{6}$ F. Devoto, ${ }^{22}$ M. d'Errico ${ }^{f f}{ }^{41}$ A. Di Canto ${ }^{g g},{ }^{43}$ B. Di Ruzza, ${ }^{16}$ J.R. Dittmann, ${ }^{5}$ M. D'Onofrio, ${ }^{28}$ S. Donati ${ }^{g g},{ }_{4}^{43}$ P. Dong, ${ }^{16}$ M. Dorigo, ${ }^{51}$ T. Dorigo, ${ }^{41}$ K. Ebina, ${ }^{55}$ A. Elagin, ${ }^{50}$ A. Eppig, ${ }^{33}$ R. Erbacher, ${ }^{7}$ S. Errede, ${ }^{23}$ N. Ershaidat ${ }^{d d},{ }^{16}$ R. Eusebi, ${ }^{50}$ S. Farrington, ${ }^{40}$ M. Feindt, ${ }^{25}$ J.P. Fernandez, ${ }^{30}$ R. Field, ${ }^{17}$ G. Flanagan ${ }^{u},{ }^{16}$ R. Forrest, ${ }^{7}$ M.J. Frank, ${ }^{5}$ M. Franklin, ${ }^{21}$ J.C. Freeman, ${ }^{16}$ Y. Funakoshi, ${ }^{55}$ I. Furic, ${ }^{17}$ M. Gallinaro, ${ }^{47}$ J.E. Garcia, ${ }^{19}$ A.F. Garfinkel, ${ }^{45}$ P. Garosi ${ }^{h h},{ }^{43}$ H. Gerberich, ${ }^{23}$ E. Gerchtein, ${ }^{16}$ S. Giagu, ${ }^{48}$ V. Giakoumopoulou, ${ }^{3}$ P. Giannetti, ${ }^{43}$ K. Gibson, ${ }^{44}$ C.M. Ginsburg, ${ }^{16}$ N. Giokaris, ${ }^{3}$ P. Giromini, ${ }^{18}$ G. Giurgiu, ${ }^{24}$ V. Glagolev, ${ }^{14}$ D. Glenzinski, ${ }^{16}$ M. Gold, ${ }^{36}$ D. Goldin, ${ }^{50}$ N. Goldschmidt, ${ }^{17}$ A. Golossanov, ${ }^{16}$ G. Gomez, ${ }^{10}$ G. Gomez-Ceballos, ${ }^{31}$ M. Goncharov, ${ }^{31}$ O. González, ${ }^{30}$ I. Gorelov, ${ }^{36}$ A.T. Goshaw, ${ }^{15}$ K. Goulianos, ${ }^{47}$ S. Grinstein, ${ }^{4}$ C. Grosso-Pilcher, ${ }^{12}$ R.C. Group ${ }^{53}$, ${ }^{16}$ J. Guimaraes da Costa, ${ }^{21}$ S.R. Hahn, ${ }^{16}$ E. Halkiadakis, ${ }^{49}$ A. Hamaguchi, ${ }^{39}$ J.Y. Han, ${ }^{46}$ F. Happacher, ${ }^{18}$ K. Hara, ${ }^{52}$ D. Hare, ${ }^{49}$ M. Hare, ${ }^{53}$ R.F. Harr, ${ }^{56}$ K. Hatakeyama, ${ }^{5}$ C. Hays, ${ }^{40}$ M. Heck, ${ }^{25}$ J. Heinrich, ${ }^{42}$ M. Herndon, ${ }^{57}$ S. Hewamanage, ${ }^{5}$ A. Hocker, ${ }^{16}$ W. Hopkins ${ }^{g},{ }^{16}$ D. Horn, ${ }^{25}$ S. Hou, ${ }^{1}$ R.E. Hughes, ${ }^{37}$ M. Hurwitz, ${ }^{12}$ U. Husemann, ${ }^{58}$ N. Hussain, ${ }^{32}$ M. Hussein, ${ }^{34}$ J. Huston, ${ }^{34}$ G. Introzzi, ${ }^{43}$ M. Iori ${ }^{j j}{ }^{48}$ A. Ivanov ${ }^{p},{ }^{7}$ E. James, ${ }^{16}$ D. Jang, ${ }^{11}$ B. Jayatilaka, ${ }^{15}$ E.J. Jeon, ${ }^{26}$ S. Jindariani, ${ }^{16}$ A. Johnstone, ${ }^{8}$ M. Jones, ${ }^{45}$ K.K. Joo, ${ }^{26}$ S.Y. Jun, ${ }^{11}$ T.R. Junk, ${ }^{16}$ T. Kamon ${ }^{25},{ }^{50}$ P.E. Karchin, ${ }^{56}$ A. Kasmi, ${ }^{5}$ Y. Kato ${ }^{o},{ }^{39}$ W. Ketchum, ${ }^{12}$ J. Keung, ${ }^{42}$ V. Khotilovich, ${ }^{50}$ B. Kilminster, ${ }^{16}$ D.H. Kim, ${ }^{26}$ H.S. Kim, ${ }^{26}$ J.E. Kim, ${ }^{26}$ M.J. Kim, ${ }^{18}$ S.B. Kim, ${ }^{26}$ S.H. Kim, ${ }^{52}$ Y.K. Kim, ${ }^{12}$ Y.J. Kim, ${ }^{26}$ N. Kimura, ${ }^{55}$ M. Kirby, ${ }^{16}$ S. Klimenko, ${ }^{17}$ K. Knoepfel, ${ }^{16}$ K. Kondo*, ${ }^{55}$ D.J. Kong, ${ }^{26}$ J. Konigsberg, ${ }^{17}$ A.V. Kotwal, ${ }^{15}$ M. Kreps, ${ }^{25}$ J. Kroll, ${ }^{42}$ D. Krop, ${ }^{12}$ M. Kruse, ${ }^{15}$ V. Krutelyov ${ }^{c},{ }^{50}$ T. Kuhr, ${ }^{25}$ M. Kurata, ${ }^{52}$ S. Kwang, ${ }^{12}$ A.T. Laasanen, ${ }^{45}$ S. Lami, ${ }^{43}$ S. Lammel, ${ }^{16}$ M. Lancaster, ${ }^{29}$ R.L. Lander, ${ }^{7}$ K. Lannon ${ }^{y},{ }^{37}$ A. Lath, ${ }^{49}$ G. Latino ${ }^{h h},{ }^{43}$ T. LeCompte, ${ }^{2}$ E. Lee, ${ }^{50}$ H.S. Lee ${ }^{q},{ }^{12}$ J.S. Lee, ${ }^{26}$ S.W. Lee ${ }^{b b},{ }^{50}$ S. Leo ${ }^{g g},{ }^{43}$ S. Leone, ${ }^{43}$ J.D. Lewis, ${ }^{16}$ A. Limosani ${ }^{t},{ }^{15}$ C.-J. Lin, ${ }^{27}$ M. Lindgren, ${ }^{16}$ E. Lipeles, ${ }^{42}$ A. Lister, ${ }^{19}$ D.O. Litvintsev, ${ }^{16}$ C. Liu, ${ }^{44}$ H. Liu, ${ }^{54}$ Q. Liu, ${ }^{45}$ T. Liu, ${ }^{16}$ S. Lockwitz, ${ }^{58}$ A. Loginov, ${ }^{58}$ D. Lucchesi ${ }^{f f},{ }^{41}$ J. Lueck, ${ }^{25}$ P. Lujan, ${ }^{27}$ P. Lukens, ${ }^{16}$ G. Lungu, ${ }^{47}$ J. Lys, ${ }^{27}$ R. Lysak ${ }^{e},{ }^{13}$ R. Madrak, ${ }^{16}$ K. Maeshima, ${ }^{16}$ P. Maestro ${ }^{h h},{ }^{43}$ S. Malik, ${ }^{47}$ G. Manca ${ }^{a},{ }^{28}$ A. Manousakis-Katsikakis, ${ }^{3}$ F. Margaroli, ${ }^{48}$ C. Marino, ${ }^{25}$ M. Martínez, ${ }^{4}$ P. Mastrandrea, ${ }^{48}$ K. Matera, ${ }^{23}$ M.E. Mattson, ${ }^{56}$ A. Mazzacane, ${ }^{16}$ P. Mazzanti, ${ }^{6}$ K.S. McFarland, ${ }^{46}$ P. McIntyre, ${ }^{50}$ R. McNulty ${ }^{j},{ }^{28}$ A. Mehta, ${ }^{28}$ P. Mehtala, ${ }^{22}$ C. Mesropian, ${ }^{47}$ T. Miao, ${ }^{16}$ D. Mietlicki, ${ }^{33}$ A. Mitra, ${ }^{1}$ H. Miyake, ${ }^{52}$ S. Moed, ${ }^{16}$ N. Moggi, ${ }^{6}$ M.N. Mondragon ${ }^{m},{ }^{16}$ C.S. Moon, ${ }^{26}$ R. Moore, ${ }^{16}$ M.J. Morello ${ }^{i i},{ }^{43}$ J. Morlock, ${ }^{25}$ P. Movilla Fernandez, ${ }^{16}$ A. Mukherjee, ${ }^{16}$ Th. Muller, ${ }^{25}$ P. Murat, ${ }^{16}$ M. Mussini ${ }^{e e},{ }^{6}$ J. Nachtman ${ }^{n},{ }^{16}$ Y. Nagai, ${ }^{52}$ J. Naganoma, ${ }^{55}$ I. Nakano, ${ }^{38}$ A. Napier, ${ }^{53}$ J. Nett, ${ }^{50}$ C. Neu, ${ }^{54}$ M.S. Neubauer, ${ }^{23}$ J. Nielsen ${ }^{d},{ }^{27}$ L. Nodulman, ${ }^{2}$ S.Y. Noh, ${ }^{26}$ O. Norniella, ${ }^{23}$ L. Oakes, ${ }^{40}$ S.H. Oh, ${ }^{15}$ Y.D. Oh, ${ }^{26}$ I. Oksuzian, ${ }^{54}$ T. Okusawa, ${ }^{39}$ R. Orava, ${ }^{22}$ L. Ortolan, ${ }^{4}$ S. Pagan Griso ${ }^{f f},{ }^{41}$ C. Pagliarone, ${ }^{51}$ E. Palencia ${ }^{f},{ }^{10}$ V. Papadimitriou, ${ }^{16}$ A.A. Paramonov, ${ }^{2}$ J. Patrick, ${ }^{16}$ G. Pauletta ${ }^{k k},{ }^{51}$ M. Paulini, ${ }^{11}$ C. Paus, ${ }^{31}$ D.E. Pellett, ${ }^{7}$ A. Penzo, ${ }^{51}$ T.J. Phillips, ${ }^{15}$ G. Piacentino, ${ }^{43}$ E. Pianori, ${ }^{42}$ J. Pilot, ${ }^{37}$ K. Pitts, ${ }^{23}$ C. Plager, ${ }^{9}$ L. Pondrom,,${ }^{57}$ S. Poprocki ${ }^{g},{ }^{16}$ K. Potamianos, ${ }^{45}$ F. Prokoshin ${ }^{c c},{ }^{14}$ A. Pranko, ${ }^{27}$ F. Ptohos ${ }^{h},{ }^{18}$ G. Punzi ${ }^{g g},{ }^{43}$ A. Rahaman, ${ }^{44}$ V. Ramakrishnan, ${ }^{57}$ N. Ranjan, ${ }^{45}$ K. Rao, ${ }^{8}$ I. Redondo, ${ }^{30}$ P. Renton, ${ }^{40}$ M. Rescigno, ${ }^{48}$ T. Riddick, ${ }^{29}$ F. Rimondiee, ${ }^{6}$ L. Ristori ${ }^{42},{ }^{16}$ A. Robson, ${ }^{20}$ T. Rodrigo, ${ }^{10}$ T. Rodriguez, ${ }^{42}$ E. Rogers, ${ }^{23}$ S. Rolli ${ }^{i},{ }^{53}$ R. Roser, ${ }^{16}$ F. Ruffini ${ }^{h h},{ }^{43}$
A. Ruiz, ${ }^{10}$ J. Russ, ${ }^{11}$ V. Rusu, ${ }^{16}$ A. Safonov, ${ }^{50}$ W.K. Sakumoto, ${ }^{46}$ Y. Sakurai, ${ }^{55}$ L. Santi ${ }^{k k},{ }^{51}$ K. Sato, ${ }^{52}$ V. Saveliev ${ }^{w},{ }^{16}$ A. Savoy-Navarro ${ }^{a a},{ }^{16}$ P. Schlabach, ${ }^{16}$ A. Schmidt, ${ }^{25}$ E.E. Schmidt, ${ }^{16}$ T. Schwarz, ${ }^{16}$ L. Scodellaro, ${ }^{10}$ A. Scribano ${ }^{h h},{ }^{43}$ F. Scuri, ${ }^{43}$ S. Seidel, ${ }^{36}$ Y. Seiya, ${ }^{39}$ A. Semenov, ${ }^{14}$ F. Sforza ${ }^{h h},{ }^{43}$ S.Z. Shalhout, ${ }^{7}$ T. Shears, ${ }^{28}$ P.F. Shepard, ${ }^{44}$ M. Shimojima ${ }^{v},{ }^{52}$ M. Shochet, ${ }^{12}$ I. Shreyber-Tecker, ${ }^{35}$ A. Simonenko, ${ }^{14}$ P. Sinervo, ${ }^{32}$ K. Sliwa, ${ }^{53}$ J.R. Smith, ${ }^{7}$ F.D. Snider, ${ }^{16}$ A. Soha, ${ }^{16}$ V. Sorin, ${ }^{4}$ H. Song, ${ }^{44}$ P. Squillacioti ${ }^{h h},{ }^{43}$ M. Stancari, ${ }^{16}$ R. St. Denis, ${ }^{20}$ B. Stelzer, ${ }^{32}$ O. Stelzer-Chilton, ${ }^{32}$ D. Stentz ${ }^{x},{ }^{16}$ J. Strologas, ${ }^{36}$ G.L. Strycker, ${ }^{33}$ Y. Sudo, ${ }^{52}$ A. Sukhanov, ${ }^{16}$ I. Suslov, ${ }^{14}$ K. Takemasa, ${ }^{52}$ Y. Takeuchi, ${ }^{52}$ J. Tang, ${ }^{12}$ M. Tecchio, ${ }^{33}$ P.K. Teng, ${ }^{1}$ J. Thom ${ }^{g},{ }^{16}$ J. Thome, ${ }^{11}$ G.A. Thompson, ${ }^{23}$ E. Thomson, ${ }^{42}$ D. Toback, ${ }^{50}$ S. Tokar, ${ }^{13}$ K. Tollefson, ${ }^{34}$ T. Tomura, ${ }^{52}$ D. Tonelli, ${ }^{16}$ S. Torre, ${ }^{18}$ D. Torretta,,${ }^{16}$ P. Totaro, ${ }^{41}$ M. Trovato ${ }^{i i},{ }^{43}$ A. Truong, ${ }^{8}$ F. Ukegawa, ${ }^{52}$ S. Uozumi, ${ }^{26}$ A. Varganov, ${ }^{33}$ F. Vázquez ${ }^{m},{ }^{17}$ G. Velev, ${ }^{16}$ C. Vellidis, ${ }^{16}$ M. Vidal, ${ }^{45}$ I. Vila, ${ }^{10}$ R. Vilar, ${ }^{10}$ J. Vizán, ${ }^{10}$ M. Vogel, ${ }^{36}$ G. Volpi, ${ }^{18}$ P. Wagner, ${ }^{42}$ R.L. Wagner, ${ }^{16}$ T. Wakisaka, ${ }^{39}$ R. Wallny, ${ }^{9}$ S.M. Wang, ${ }^{1}$ A. Warburton, ${ }^{32}$ D. Waters, ${ }^{29}$ W.C. Wester III, ${ }^{16}$ D. Whiteson ${ }^{b},{ }^{42}$ A.B. Wicklund, ${ }^{2}$ E. Wicklund, ${ }^{16}$ S. Wilbur, ${ }^{12}$ F. Wick, ${ }^{25}$ H.H. Williams, ${ }^{42}$ J.S. Wilson, ${ }^{37}$ P. Wilson, ${ }^{16}$ B.L. Winer, ${ }^{37}$ P. Wittich ${ }^{g},{ }^{16}$ S. Wolbers, ${ }^{16}$ H. Wolfe, ${ }^{37}$ T. Wright, ${ }^{33}$ X. Wu, ${ }^{19} \mathrm{Z}$. Wu, ${ }^{5}$ K. Yamamoto, ${ }^{39}$ D. Yamato, ${ }^{39}$ T. Yang, ${ }^{16}$ U.K. Yang ${ }^{r},{ }^{12}$ Y.C. Yang, ${ }^{26}$ W.-M. Yao, ${ }^{27}$ G.P. Yeh, ${ }^{16} \mathrm{~K}^{\text {K. Yi }}{ }^{n},{ }^{16}$ J. Yoh, ${ }^{16}$ K. Yorita, ${ }^{55}$ T. Yoshida ${ }^{l},{ }^{39}$ G.B. Yu, ${ }^{15}$ I. Yu, ${ }^{26}$ S.S. Yu, ${ }^{16}$ J.C. Yun, ${ }^{16}$ A. Zanetti, ${ }^{51}$ Y. Zeng, ${ }^{15}$ C. Zhou, ${ }^{15}$ and S. Zucchelliee ${ }^{e} 6$ (CDF Collaboration ${ }^{\dagger}$)
${ }^{1}$ Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
${ }^{2}$ Argonne National Laboratory, Argonne, Illinois 60439, USA
${ }^{3}$ University of Athens, 15771 Athens, Greece
${ }^{4}$ Institut de Fisica d'Altes Energies, ICREA, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain
${ }^{5}$ Baylor University, Waco, Texas 76798, USA
${ }^{6}$ Istituto Nazionale di Fisica Nucleare Bologna, ${ }^{e e}$ University of Bologna, I-40127 Bologna, Italy
${ }^{7}$ University of California, Davis, Davis, California 95616, USA
${ }^{8}$ University of California, Irvine, Irvine, California 92697, USA
${ }^{9}$ University of California, Los Angeles, Los Angeles, California 90024, USA
${ }^{10}$ Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
${ }^{11}$ Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
${ }^{12}$ Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
${ }^{13}$ Comenius University, 84248 Bratislava, Slovakia; Institute of Experimental Physics, 04001 Kosice, Slovakia
${ }^{14}$ Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
${ }^{15}$ Duke University, Durham, North Carolina 27708, USA
${ }^{16}$ Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
${ }^{17}$ University of Florida, Gainesville, Florida 32611, USA
${ }^{18}$ Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
${ }^{19}$ University of Geneva, CH-1211 Geneva 4, Switzerland
${ }^{20}$ Glasgow University, Glasgow G12 8QQ, United Kingdom
${ }^{21}$ Harvard University, Cambridge, Massachusetts 02138, USA
${ }^{22}$ Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland ${ }^{23}$ University of Illinois, Urbana, Illinois 61801, USA
${ }^{24}$ The Johns Hopkins University, Baltimore, Maryland 21218, USA
${ }^{25}$ Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
${ }^{26}$ Center for High Energy Physics: Kyungpook National University,
Daegu 702-701, Korea; Seoul National University, Seoul 151-742,
Korea; Sungkyunkwan University, Suwon 440-746,
Korea; Korea Institute of Science and Technology Information,
Daejeon 305-806, Korea; Chonnam National University, Gwangju 500-757,
Korea; Chonbuk National University, Jeonju 561-756, Korea
${ }^{27}$ Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
${ }^{28}$ University of Liverpool, Liverpool L69 7ZE, United Kingdom
${ }^{29}$ University College London, London WC1E 6BT, United Kingdom
${ }^{30}$ Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain
${ }^{31}$ Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
${ }^{32}$ Institute of Particle Physics: McGill University, Montréal, Québec,
Canada H3A 2T8; Simon Fraser University, Burnaby, British Columbia,
Canada V5A 1S6; University of Toronto, Toronto, Ontario,
Canada M5S 1A7; and TRIUMF, Vancouver, British Columbia, Canada V6T $2 A 3$
${ }^{33}$ University of Michigan, Ann Arbor, Michigan 48109, USA
${ }^{34}$ Michigan State University, East Lansing, Michigan 48824, USA
${ }^{35}$ Institution for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia

${ }^{36}$ University of New Mexico, Albuquerque, New Mexico 87131, USA
${ }^{37}$ The Ohio State University, Columbus, Ohio 43210, USA
${ }^{38}$ Okayama University, Okayama 700-8530, Japan
${ }^{39}$ Osaka City University, Osaka 588, Japan
${ }^{40}$ University of Oxford, Oxford OX1 3RH, United Kingdom
${ }^{41}$ Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, ${ }^{f f}$ University of Padova, I-35131 Padova, Italy
${ }^{42}$ University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
${ }^{43}$ Istituto Nazionale di Fisica Nucleare Pisa, ${ }^{g g}$ University of Pisa,
${ }^{h h}$ University of Siena and ${ }^{i i}$ Scuola Normale Superiore, I-56127 Pisa, Italy
${ }^{44}$ University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
${ }^{45}$ Purdue University, West Lafayette, Indiana 47907, USA
${ }^{46}$ University of Rochester, Rochester, New York 14627, USA
${ }^{47}$ The Rockefeller University, New York, New York 10065, USA
${ }^{48}$ Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1,
${ }^{j j}$ Sapienza Università di Roma, I-00185 Roma, Italy
${ }^{49}$ Rutgers University, Piscataway, New Jersey 08855, USA
${ }^{50}$ Texas AछM University, College Station, Texas 77843, USA
${ }^{51}$ Istituto Nazionale di Fisica Nucleare Trieste/Udine, I-34100 Trieste, ${ }^{k k}$ University of Udine, I-33100 Udine, Italy
${ }^{52}$ University of Tsukuba, Tsukuba, Ibaraki 305, Japan
${ }^{53}$ Tufts University, Medford, Massachusetts 02155, USA
${ }^{54}$ University of Virginia, Charlottesville, Virginia 22906, USA
${ }^{55}$ Waseda University, Tokyo 169, Japan
${ }^{56}$ Wayne State University, Detroit, Michigan 48201, USA
${ }^{57}$ University of Wisconsin, Madison, Wisconsin 53706, USA
${ }^{58}$ Yale University, New Haven, Connecticut 06520, USA

We present a search for new particles in an extension to the standard model that includes a heavy Higgs boson $\left(H^{0}\right)$, a lighter charged Higgs boson $\left(H^{ \pm}\right)$, and an even-lighter Higgs boson h^{0}, with decays leading to a W-boson pair and a bottom-antibottom quark pair in the final state. We use events with exactly one lepton, missing transverse momentum, and at least four jets in data corresponding to an integrated luminosity of $8.7 \mathrm{fb}^{-1}$ collected by the CDF II detector in protonantiproton collisions at $\sqrt{s}=1.96 \mathrm{TeV}$. We find the data to be consistent with standard model predictions and report the results in terms of a simplified Higgs-cascade-decay model, setting 95% confidence level upper limits on the product of cross-section and branching fraction from 1.3 pb to 15 fb as a function of H^{0} and $H^{ \pm}$masses for $m_{h}^{0}=126 \mathrm{GeV} / c^{2}$.

PACS numbers: $12.60 .-\mathrm{i}, 13.85 . \mathrm{Rm}, 14.80 .-\mathrm{j}$

[^0]The study of the mechanism of electroweak-symmetry breaking is one of the major thrusts of the experimental high-energy-physics program. Following the discovery of a Higgs-like boson at ATLAS [1] and CMS [2] with a mass of approximately $126 \mathrm{GeV} / c^{2}$ and complementary evidence from CDF and D0 [3], the most pressing question is whether this state is in fact the Higgs boson of the standard model (SM), part of an extended Higgs sector (such as that of the minimal supersymmetric standard model, MSSM [4]), a composite Higgs [5], or a completely different particle with Higgs-like couplings (such as a radion in warped extra dimensions [6] or a dilaton [7]).

We search for particles in an extension to the standard model that includes a light neutral Higgs boson, h^{0}, with

[^1]mass $m_{h^{0}}=126 \mathrm{GeV} / c^{2}$. Rather than assuming a particular theoretical framework (such as the MSSM), we follow a phenomenological approach, using a general twoHiggs doublet model as a convenient simplified model [8], which contains a heavy charged Higgs boson $H^{ \pm}$and a heavier neutral state H^{0}. In this approach, the search for a number of specific final states that have the strongest couplings to Higgs particles is motivated [9, 10]. The final state of a W-boson pair $(W W)$ is enhanced by $W W$ scattering in models where the Higgs sector is strongly coupled [11]. This signal has been the subject of much detailed investigation [12]. The phenomenology of resonant production of the final states $Z h^{0}[13]$ and $W^{+} W^{-} Z$ [14] has also been investigated.

In this letter, we focus on the final state $W^{+} W^{-} b \bar{b}$ [15], which can have a large production rate from the process $g g \rightarrow H^{0}$ followed by $H^{0} \rightarrow H^{ \pm} W^{\mp}$ with $H^{ \pm} \rightarrow$ $W^{ \pm} h^{0} \rightarrow W^{ \pm} b \bar{b}$. The $W^{+} W^{-} b \bar{b}$ final state is also the final state of top-quark pair production, and has been extensively studied. However, no search for Higgs-boson cascades as described here has been reported previously, though searches have been performed for charged Higgs bosons in top-quark decays $t \rightarrow H^{ \pm} b$ [16-18].

We analyze a data sample corresponding to an integrated luminosity of $8.7 \pm 0.5 \mathrm{fb}^{-1}$ recorded by the CDF II detector [19], a general purpose detector designed to study $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$ in the Fermilab Tevatron collider. The CDF tracking system consists of a silicon microstrip tracker and a drift chamber that are immersed in a 1.4 T axial magnetic field [20]. Projective-tower-geometry electromagnetic and hadronic calorimeters surrounding the tracking system measure particle energies, with muon detection provided by additional drift chambers located outside the calorimeters.

The signature of $H^{0} \rightarrow W^{\mp} H^{ \pm} \rightarrow W^{-} W^{+} h^{0} \rightarrow$ $W^{-} W^{+} b \bar{b}$ is a charged lepton (e or μ), missing transverse momentum, two jets arising from b quarks, and two additional jets from a W-boson hadronic decay. Events are selected online (triggered) by the requirement of an electron (e) or muon (μ) candidate [21] with transverse momentum $p_{T}[22]$ greater than $18 \mathrm{GeV} / c$. After trigger selection, events are retained if the electron or muon candidate has a pseudorapidity $|\eta|<1.1$ [22], $p_{T}>20$ GeV / c, and satisfies the standard CDF identification and isolation requirements [21]. We reconstruct jets in the calorimeter using the JETCLU [23] algorithm with a clustering radius of 0.4 in $\eta-\phi$ space. The jets are calibrated using the techniques outlined in Ref. [24]. At least four jets are required, each with transverse energy $E_{T}>15 \mathrm{GeV}$ and $|\eta|<2.4$. Missing transverse momentum [25] is reconstructed using calorimeter and muon information [21]; in the $W^{+} W^{-} b \bar{b}$ experimental signature, the missing transverse momentum is mostly due to the neutrino from the leptonically-decaying W boson. We require $E_{T}>20 \mathrm{GeV} / c$. Since such a signal would yield two jets originating from b quarks, we require (with min-
imal loss of efficiency) evidence of decay of a b hadron in at least one jet. This requirement, called b-tagging, makes use of the SECVTX algorithm, which identifies jets from b quarks via their secondary vertices [26].

We model the production of H^{0} bosons with $m_{H^{0}}=$ $325-1100 \mathrm{GeV} / c^{2}$ and subsequent decays $H^{0} \rightarrow W^{\mp} H^{ \pm}$ with $m_{H^{ \pm}}=225-600 \mathrm{GeV} / c^{2}$ and decays $H^{ \pm} \rightarrow W^{ \pm} h^{0}$ with $m_{h^{0}}=126 \mathrm{GeV} / c^{2}$, all with MADGRAPH [27]. Additional radiation, hadronization, and showering are described by PYTHIA [28]. The detector response for all simulated samples is modeled by the GEANT-based CDF II detector simulation [29].

The dominant SM background to this signature is topquark pair production. We model this background using PYTHIA with a top-quark mass $m_{t}=172.5 \mathrm{GeV} / c^{2}$ [30]. We normalize the $t \bar{t}$ background to the theoretical calculation at next-to-next-to-leading order (NNLO) in the strong interaction coupling constant, α_{s} [31]. In addition, events generated by a next-to-leading order program, MC@NLO [32] are used in estimating an uncertainty in modeling the radiation of an additional jet.

The second largest SM background process is the associated production of a W boson and jets. Samples of W-boson+jets events with light- and heavy-flavor (b, c) quark jets are generated using ALPGEN [33], and interfaced with a parton-shower model from PYTHiA. The W boson + jets samples are normalized to the measured W -boson-production cross section, with an additional multiplicative factor for the relative contribution of heavyand light-flavor jets, following Ref. [26].

Backgrounds due to production of a Z boson with additional jets, where the second lepton from the Z boson decay is not reconstructed, are small compared to the W-boson background and are modeled using events generated with ALPGEN interfaced to the parton-shower model from PYTHIA. The multi-jet background, in which a jet is misreconstructed as a lepton, is modeled using events triggered on jets and normalized to a backgrounddominated region at low missing transverse momentum where the multi-jet background is large.

The SM backgrounds due to production of single top quarks and pairs of vector bosons are modeled using MADGRAPH interfaced with PYTHIA parton-shower models and PYTHIA, respectively, and normalized to next-to-leading-order cross sections [34, 35].

The Higgs-boson candidate mass reconstruction begins with identification of the leptonically-decaying W boson, assuming the missing transverse momentum is due to the resulting neutrino. Of the multiple solutions for the neutrino pseudorapidity, we use the smallest value that yields the reconstructed W mass closest to the known value. The hadronically-decaying W boson is identified as the pair of jets that yield the reconstructed dijet mass closest to the known W mass, excluding jets with a b-tag. If fewer than two jets without b-tags are present, the same procedure is used but modified to include the b-tagged

FIG. 1: Distribution of reconstructed Higgs-boson masses in simulated events. Top: $m_{h^{0}}=126 \mathrm{GeV} / c^{2}$ reconstructed as $m_{b b}$, center: $m_{H^{ \pm}}$as $m_{W b b}$, and bottom: $m_{H^{0}}$ as $m_{W W b b}$.
jets. The light h^{0} is reconstructed from the remaining b-tagged jets. If fewer than two b-tagged jets remain, the jet or jets with largest transverse momentum not associated with the hadronic W-boson decay are used instead, without significant loss of mass resolution. Figure 1 shows distributions of the reconstructed mass for several choices of Higgs masses.

We enhance the signal-to-background ratio through requirements on the mass of the $W^{+} W^{-} b \bar{b}$ and $W^{ \pm} b \bar{b}$ systems, and search for an excess of events above expectations from backgrounds in event distributions versus the mass of the $b \bar{b}$ system $\left(h^{0} \rightarrow b \bar{b}\right)$. Backgrounds have broad, smoothly decreasing distributions while a signal would be reconstructed near the Higgs-boson mass.

We consider several sources of systematic uncertainty on the predicted background rates and distributions, as well as on the expectations for a signal. Each systematic uncertainty affects the expected sensitivity to a signal, expressed as an expected cross-section upper limit in the no-signal assumption. The dominant systematic uncertainty is the jet-energy-scale uncertainty [24], followed
by theoretical uncertainties on the cross sections of the background processes. To probe the description of additional jets, we compare our nominal $t \bar{t}$ model to one generated by Mc@NLO and take the full difference as a systematic uncertainty. We also consider systematic uncertainties associated with the description of initial- and final-state radiation [36], uncertainties in the efficiency of reconstructing leptons and identifying b-quark jets, and uncertainties in the contribution from multiple interactions. In addition, we consider a variation of the Q^{2} scale of W-boson + jet events in ALGPEN. In each case, we treat the unknown underlying quantity as a nuisance parameter. Except in the case of the normalization uncertainty, which affects only the overall rates, for each source of uncertainty we measure the distortion of the $m_{b \bar{b}}$ spectrum for positive and negative fluctuations of the underlying quantity. Table I lists the contributions of each of these sources of systematic uncertainty to the yields.

TABLE I: Contributions to the systematic uncertainty on the expected numbers of events for the two main background processes, the total background yield, and an example 500 GeV / c^{2} Higgs-boson signal with an assumed total cross section of 1 pb .

Process	$t \bar{t}$	W-boson+jets	Total bg.	Higgs
Predicted yield	229	43	294	341
Jet energy scale	23%	-	17%	12%
Radiation	3%	-	2%	8%
Q^{2} scale	-	18%	3%	-
Mult. interactions	1%	6%	2%	-
$t \bar{t}$ generator	5%	-	4%	-
Normalization	10%	30%	16%	-
Total syst. uncert.	26%	35%	24%	15%

We validate our modeling of the SM backgrounds in four background-dominated control regions. Each control region preserves the one lepton and at least four jet requirements with additional requirements per region. Events in the first region are used to study the $W^{+} W^{-} b \bar{b}$ and $W^{ \pm} b \bar{b}$ mass reconstruction, requiring at least one b tagged jet and $b \bar{b}$ mass smaller than $100 \mathrm{GeV} / c^{2}$. The second region probes $b \bar{b}$ and $W^{+} W^{-} b \bar{b}$ mass reconstruction, requiring at least one b-tagged jet and $W^{ \pm} b \bar{b}$ mass smaller than $250 \mathrm{GeV} / c^{2}$. The third region tests the modeling of $W^{ \pm} b \bar{b}$ and $b \bar{b}$ mass reconstruction, requiring at least one b-tagged jet and $W^{+} W^{-} b \bar{b}$ mass less than $450 \mathrm{GeV} / c^{2}$. The fourth region tests the modeling of the W-boson-plus-jets background, requiring exactly zero b tagged jets and $W^{+} W^{-} b \bar{b}$ mass greater than $450 \mathrm{GeV} / c^{2}$. Assuming an H^{0} production cross section of 250 fb , each control region is expected to have negligible signal contamination, with the exception of the zero b-tag region which would include signal events at approximately 10% of the sample. For two of the control regions, Fig. 2 shows the reconstructed $b \bar{b}$ mass distributions which, along with other similar distributions, indicate that the background

FIG. 2: Distribution of events versus reconstructed $b \bar{b}$ invariant mass $\left(m_{b \bar{b}}\right)$ for observed data and expected backgrounds in two control regions. Top, control region consisting events with at least four jets, exactly zero b-tags and $m_{W W b b}<450$ GeV / c^{2}. Bottom, control region consisting of events with at least four jets and $m_{W b b}<250 \mathrm{GeV} / c^{2}$. The lower panels give the relative difference between the observed and expected distributions; the hatched areas show the combined statistical and systematic uncertainties of the expected background. The small dip near $80 \mathrm{GeV} / c^{2}$ is mainly due to the W-boson mass reconstruction.
mass distributions are well modeled within systematic uncertainties.

Figure 3 shows the observed distribution of events in a representative signal region compared to possible signals and estimated backgrounds. At each Higgs-boson mass hypothesis, we fit the most likely value of the Higgs-boson cross section by performing a maximum-likelihood fit in the binned $m_{b \bar{b}}$ distribution, allowing for systematic and statistical fluctuations via template morphing [37]. No evidence is found for the presence of Higgs-boson cascade decays in $W W b \bar{b}$ events. We set upper limits on Higgs production at 95% confidence level using the CLs method [38], without profiling the systematic uncertainties. The observed limits are consistent with expectation for the background-only hypothesis. See Fig. 4 and Ta-

FIG. 3: Distribution of events versus reconstructed $b \bar{b}$ invariant mass $\left(m_{b \bar{b}}\right)$, for observed data and expected backgrounds in the signal region. A signal hypothesis is shown, assuming a total cross section of $250 \mathrm{fb}, m_{H^{0}}=500 \mathrm{GeV} / c^{2}$, and $m_{H^{ \pm}}=300 \mathrm{GeV} / c^{2}$. See Fig 2 for descriptions of lower panel and hatching.
ble II.

FIG. 4: Upper limits at 95\% C.L. on the cross section times branching fraction as a function of the Higgs-boson masses $m_{H^{ \pm}}$and $m_{H^{0}} ; m_{h^{0}}$ is fixed to $126 \mathrm{GeV} / c^{2}$ in each case. Diamonds show the grid of probed masses; the intermediate values are interpolated.

In conclusion, we report on the first search for multiple Higgs bosons in cascade decays. For each accepted event, we reconstruct the lightest neutral Higgs-boson mass $\left(m_{b \bar{b}}\right)$, and find the CDF data to be consistent with standard model background predictions. We calculate 95% C.L. upper limits on the cross section of such Higgsboson production, assuming 100% branching ratio of H^{0} to $W^{ \pm} H^{\mp}$ and $H^{ \pm}$to $W^{ \pm} h^{0}$, from 1.3 pb to 0.015 pb for masses ranging from $\left(m_{H^{0}}=325, m_{H^{ \pm}}=225\right) \mathrm{GeV} / c^{2}$ to $\left(m_{H^{0}}=1100, m_{H^{ \pm}}=600\right) \mathrm{GeV} / c^{2}$ respectively, and interpret the limits in terms of a simplified two-Higgsdoublet model. While the limits cited here do not exclude any region in the $m_{H^{0}}-m_{H^{ \pm}-\text {-plane in the simpli- }}$ fied model used, there are the first such limits available. The larger center-of-mass energy and integrated luminosity of data collected by the LHC experiments are likely to

TABLE II: Signal region definitions and expected and observed 95% C.L. upper limits on the production cross section times branching fraction for each Higgs-boson mass hypothesis. Theoretical predictions are also shown [39-41].

$\left(m_{H^{0}}, m_{H^{ \pm}}\right)$ $\left(\mathrm{GeV} / c^{2}\right)$	$m_{H^{ \pm}}$ $\left(\mathrm{GeV} / c^{2}\right)$	$m_{H^{0}}$ $\left(\mathrm{Gev} / \mathrm{c}^{2}\right)$	Exp (Obs) Limit (fb)	Theory (fb)
325,225	>175	>275	$1100(1300)$	34
400,300	>225	>325	$960(1100)$	18
425,225	>200	>375	$900(960)$	13
500,300	>200	>450	$470(590)$	3.9
500,400	>350	>450	$510(700)$	3.9
525,225	>100	>500	$420(460)$	2.5
600,300	>200	>550	$200(180)$	0.76
600,400	>350	>550	$210(250)$	0.76
700,400	>325	>650	$90(100)$	0.15
700,600	>450	>650	$10(96)$	0.15
725,225	>425	>700	$90(120)$	0.10
800,300	>275	>750	$50(51)$	3×10^{-2}
800,600	>475	>725	$43(46)$	3×10^{-2}
900,400	>450	>775	$28(36)$	6×10^{-3}
900,600	>475	>800	$24(29)$	6×10^{-3}
1100,600	>475	>975	$13(15)$	2×10^{-4}

have the sensitivity to discover or exclude such models.
We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R\&D Agency; the Academy of Finland; and the Australian Research Council (ARC).
[1] G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1 (2012).
[2] S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 716, 30 (2012).
[3] T. Aaltonen et al., (CDF and D0 Collaborations), Phys. Rev. Lett. 109, 071804 (2012).
[4] H. P. Nilles, Phys. Rept. 110, 1 (1984); H. E. Haber and G. L. Kane, Phys. Rept. 117, 75 (1985).
[5] D. B. Kaplan and H. Georgi, Phys. Lett. B136, 183 (1984).
[6] C. Csaki, M. Graesser, L. Randall, and J. Terning, Phys. Rev. D 62, 045015 (2000); G. F. Giudice, R. Rattazzi,
and J. D. Wells, Nucl. Phys. B595, 250 (2001).
[7] W. D. Goldberger, B. Grinstein, and W. Skiba, Phys. Rev. Lett. 100, 111802 (2008).
[8] D. Alves et al., J. Phys. G 39, 105005 (2012).
[9] J. A. Evans and M. A. Luty, Phys. Rev. Lett. 103, 101801 (2009).
[10] S. Chang, J. A. Evans, and M. A. Luty, simplified model "Multiple Weak Bosons from Strong Spin-0 Resonances," http://lhcnewphysics.org/leptons.
[11] B. W. Lee, C. Quigg, and H. B. Thacker, Phys. Rev. D 16, 1519 (1977); M. S. Chanowitz and M. K. Gaillard, Nucl. Phys. B261, 379 (1985).
[12] J. Bagger, V. D. Barger, K. -m. Cheung, J. F. Gunion, T. Han, G. A. Ladinsky, R. Rosenfeld and C. -P. Yuan, Phys. Rev. D 52, 3878 (1995); J. M. Butterworth, B. E. Cox, and J. R. Forshaw, Phys. Rev. D 65, 096014 (2002);
[13] S. Abdullin, H. Baer, C. Kao, N. Stepanov, and X. Tata, Phys. Rev. D 54, 6728 (1996).
[14] S. Chang, J. Evans, and M. Luty, Phys. Rev. D 84, 095030 (2011).
[15] J. A. Evans, B. Kilminster, M. Luty, D. Whiteson, B. Kilminster, M. A. Luty and D. Whiteson, Phys. Rev. D 85, 055009 (2012).
[16] G. Aad et al. (ATLAS Collaboration), J. High Energy Phys. 06 (2012) 039.
[17] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 103, 101803 (2009).
[18] V. M. Abazov et al. (D0 Collaboration), Phys. Lett. B 682, 278 (2009).
[19] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 71, 032001 (2005).
[20] C. S. Hill, Nucl. Instrum. Methods A 530, 1 (2004).
[21] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 97, 082004 (2006); T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 94, 091803 (2005).
[22] CDF uses a cylindrical coordinate system with the z axis along the proton beam axis. For a particle or a jet, pseudorapidity is $\eta \equiv-\ln (\tan (\theta / 2))$, where θ is the polar angle of a particle or a jet relative to the proton beam direction, and ϕ is the azimuthal angle while transverse momentum is $p_{T}=|p| \sin \theta$, and the transverse energy is $E_{T}=E \sin \theta$.
[23] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 45, 001448 (1992).
[24] A. Bhatti et al., Nucl. Instrum. Methods A 566, 375 (2006).
[25] Missing transverse momentum, E_{T}, is defined as the magnitude of the vector $-\sum_{i} E_{T}^{i} \vec{n}_{i}$ where E_{T}^{i} are the magnitudes of transverse energy contained in each calorimeter tower i, and \vec{n}_{i} is the unit vector from the interaction vertex to the tower cetroid in the transverse (x, y) plane.
[26] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 74, 072006 (2006).
[27] J. Alwall, P. Demin, S. de Visscher, R. Frederix, M. Herquet, F. Maltoni, T. Plehn, D. L. Rainwater and T. Stelzer, J. High Energy Phys. 09 (2007) 028.
[28] T. Sjostrand, P. Eden, C. Friberg, L. Lonnblad, G. Miu, S. Mrenna and E. Norrbin, Comput. Phys. Commun. 238, 135 (2001), version 6.422.
[29] E. Gerchtein and M. Paulini, arXiv:physics/0306031 (2003).
[30] Electroweak Group (CDF and D0 Collaborations), arXiv:1107.5255 (2011). We use a top-quark mass of 172.5 GeV / c^{2} which is compatible with the current Tevatron
combination of $173.2 \pm 0.9 \mathrm{GeV} / c^{2}$.
[31] U. Langenfeld, S. Moch and P. Uwer, Phys. Rev. D 80, 054009 (2009).
[32] S. Frixione, P. Nason, and B. Webber, J. High Energy Phys. 08 (2003) 007.
[33] M. L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A. D. Polosa, J. High Energy Phys. 07 (2003) 001.
[34] J.M. Campbell and R.K. Ellis, Phys. Rev. D 60, 113006 (1999).
[35] B.W. Harris, E. Laenen, L. Phaf, Z. Sullivan, and S. Weinzierl, Phys. Rev. D 66, 054024 (2002).
[36] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 73, 032003 (2006).
[37] A. Read, Nucl. Instrum. Methods A 425, 357 (1999).
[38] A. Read, J. Phys. G 28, 2693 (2002); T. Junk, Nucl. Instrum. Methods A 434, 425 (1999).
[39] J. Baglio and A. Djouadi, J. High Energy Phys. 10 (2010) 064.
[40] J. Baglio and A. Djouadi, J. High Energy Phys. 03 (2011) 055.
[41] J. Baglio and A. Djouadi, private communication (2012).

[^0]: *Deceased
 ${ }^{\dagger}$ With visitors from ${ }^{a}$ Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, 09042 Monserrato (Cagliari), Italy, ${ }^{b}$ University of CA Irvine, Irvine, CA 92697, USA, ${ }^{c}$ University of CA Santa Barbara, Santa Barbara, CA 93106, USA, ${ }^{d}$ University of CA Santa Cruz, Santa Cruz, CA 95064, USA, ${ }^{e}$ Institute of Physics, Academy of Sciences of the Czech Republic, Czech Republic, ${ }^{f}$ CERN, CH-1211 Geneva, Switzerland, ${ }^{g}$ Cornell University, Ithaca, NY 14853, USA, ${ }^{h}$ University of Cyprus, Nicosia CY-1678, Cyprus, ${ }^{i}$ Office of Science, U.S. Department of Energy, Washington, DC 20585, USA, ${ }^{j}$ University College Dublin, Dublin 4, Ireland, ${ }^{k}$ ETH, 8092 Zurich, Switzerland, ${ }^{l}$ University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017, ${ }^{m}$ Universidad Iberoamericana, Mexico D.F., Mexico, ${ }^{n}$ University of Iowa, Iowa City, IA 52242, USA, ${ }^{o}$ Kinki University, Higashi-Osaka City, Japan 577-8502, ${ }^{p}$ Kansas State University, Manhattan, KS 66506, USA, ${ }^{q}$ Ewha Womans University, Seoul, 120-750, Korea, ${ }^{r}$ University of Manchester, Manchester M13 9PL, United Kingdom, ${ }^{s}$ Queen Mary, University of London, London, E1 4NS, United Kingdom, ${ }^{t}$ University of Melbourne, Victoria 3010, Australia, ${ }^{u}$ Muons, Inc., Batavia, IL 60510, USA, ${ }^{v}$ Nagasaki Institute of Applied Science, Nagasaki, Japan, ${ }^{w}$ National Research Nuclear University, Moscow, Russia, ${ }^{x}$ Northwestern University, Evanston, IL 60208, USA, ${ }^{y}$ University of Notre Dame, Notre Dame,

[^1]: IN 46556, USA, ${ }^{z}$ Universidad de Oviedo, E-33007 Oviedo, Spain, ${ }^{a a}$ CNRS-IN2P3, Paris, F-75205 France, ${ }^{b b}$ Texas Tech University, Lubbock, TX 79609, USA, ${ }^{c c}$ Universidad Tecnica Federico Santa Maria, 110v Valparaiso, Chile, ${ }^{d d}$ Yarmouk University, Irbid 211-63, Jordan,

