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We present and analyze a new approach for the generation of atomic spin squeezed states. Our
method involves the collective coupling of an atomic ensemble to a decaying mode of an open optical
cavity. We demonstrate the existence of a collective atomic dark-state, decoupled from the radiation
field. By explicitly constructing this state we find that it can feature spin squeezing bounded only
by the Heisenberg limit. We show that such dark states can be deterministically prepared via
dissipative means, thus turning dissipation into a resource for entanglement. The scaling of the
phase sensitivity taking realistic imperfections into account is discussed.

The realization of spin squeezed states [1] of atomic
ensembles is an important subject in quantum science.
Such states play a central role in studies of many-body
entanglement [2–4]. In addition, they may lead to the
practical improvements of state-of-the-art atomic clocks
and frequency standards [5–7]. In a spin-squeezed-state
the atoms are entangled in such a way that the fluctua-
tions of their total spin are smaller than the sum of the
fluctuations of the individual atoms. As a rule, such en-
tangled states are extremely fragile and spin squeezing is
destroyed due to dissipation or decoherence.

In this Letter we propose a new approach for the real-
ization of spin squeezing using recently developed ideas
on quantum-bath engineering [8–12] and show how to re-
alize squeezing in the steady state of a dissipative atom-
cavity system. In our scheme, the steady state is unique
and is reached by the system starting from any initial
state, without the need to adiabatically follow a par-
ticular path in the parameter space. Because the spin
squeezing is achieved by optical pumping, our approach
can be considerably more robust against noise as com-
pared to existing preparation methods [13–21] that pro-
duce short-lived spin squeezed states, limited by decoher-
ence processes. Moreover, using properly selected atomic
transitions allows to continously pump the atoms into the
desired states and consequently avoid population losses
due to scattering into states not not participating in the
squeezing. A similar approach to continously entangle
two remote atomic ensemble using free space scattering
has been experimentally demonstrated in Ref. [22].

The central idea of our work can be understood by
considering an ensemble of N atoms interacting with a
single radiation mode of an open optical cavity (Fig. 1a)
and externally driven by a pair of coherent laser fields.
The cavity mode and laser fields are tuned to excite a
pair of two-photon Raman transitions, each involving one
laser field with Rabi frequency Ω± and a single cavity
photon a (a†) (Fig. 1b). Assuming that the coupling of
atoms to the cavity mode is uniform, the unitary time-
evolution of such cavity-atom system is described by the

(a) (b)

FIG. 1. (a) Schematic experimental setup of atoms with a
spontaneous emission rate γ in a cavity with line-width κ sup-
porting a single cavity mode a. (b) Effective linkage pattern
consisting of two degenerate ground states ( | ± 〉 ) encoding
the effective atomic spin and two excited state | e± 〉 . The
system is driven via classical control fields Ω± with large de-
tuning ∆ and a single global cavity mode a coupling homoge-
neously to all atoms. The orientation of the arrows does not
necessarily correspond to the actual polarization of the fields
in a specific physical realization. We give an example of such
an implementation in the Supplementary Material.

effective Hamiltonian

Hint =
g

∆
a†

(

Ω+S
+ +Ω−S

−
)

+H.c. , (1)

where S+ (S−) is the spin raising (lowering) operator
of the collective spin, g is the single atom-field cou-
pling strength and ∆ is the single-photon detuning from
the excited state. The coupling gΩ±/∆ is therefore an
effective Rabi frequency corresponding to off-resonant
Raman scattering (cf. Fig. 1). Direct examination
of the Hamiltonian (1) shows that it has a dark-state
|D 〉 = |ψspin 〉 | 0cav 〉 , where | 0cav 〉 is the cavity vac-
uum and |ψspin 〉 satisfies

(

Ω+S
+ +Ω−S

−
)

|ψspin 〉 = 0 . (2)

The interesting features of this state are (i) that it is a
pure state not containing any photons and consequently
is not affected by the cavity decay, i.e. |ψspin 〉 is a dark-

state of the cavity decay, and (ii) it describes a highly
correlated atomic state containing a high degree of spin
squeezing. The latter can be seen by computing the ratio
between the spin fluctuations in the x and y direction:
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FIG. 2. Phase sensitivity of the dark-state |ψspin 〉 : exact nu-
merical solution (solid curve) and mean-field approximation
(dashed curve) for N = 10 (left) and N = 100 (right) atoms.
The optimal squeezing is obtained for Ω+ → Ω− and ap-
proaches the Heisenberg limit δφ = 1/

√

N(N/2 + 1) ∼ 1/N .

〈S2
x 〉 / 〈S2

y 〉 = 〈 (S+ + S−)2 〉 / 〈 (S+ − S−)2 〉 = (Ω−−
Ω+)

2/(Ω−+Ω+)
2. For any Ω+ 6= Ω− this ratio is smaller

than one, indicating that the dark state is spin squeezed.

To quantify the degree of useful spin squeezing, we
use the phase sensitivity introduced by Wineland et al.

[7, 23]

δφ =

√

〈S2
x〉

|〈Sz〉|
. (3)

We first focus on symmetric states with the total spin
S = N/2, i.e. an initially spin-polarized ensemble, and
expand the dark-state into eigenstates of Sz as |ψspin 〉 =
∑

m cm |S = N/2, Sz = −N/2 +m 〉 . Substituting this
into (2) results in a recursion relation between cm and
cm+2, in close analogy with squeezed light [24]

cm=2n =

(

Ω+

Ω−

)n (
N/2
n

)(

N
2n

)−1/2

c0. (4)

Here (:) are the binomial coefficients and c0 is deter-
mined by the normalization condition

∑

m |cm|2 = 1.
The phase sensitivity δφ of |ψspin 〉 is shown by the blue
solid curve in Fig. 2 as function of the ratio Ω+/Ω− be-
tween the control fields. For Ω+/Ω− = 0, the dark-state
is fully polarized along the z-axis, giving a phase sensi-
tivity of 1/

√
N corresponding to the Standard Quantum

Limit (SQL). In the opposite limit of Ω+ → Ω−, the
phase sensitivity approaches the Heisenberg limit [16, 25]
δφ = 1/

√

N(N/2 + 1), indicating that the dark state
corresponds to an almost maximally squeezed atomic
state. A related method to generate spin squeezing in
the weak coupling regime, i.e. Ω+/Ω− ≪ 1, has been
recently proposed in Ref. [26].

We now turn to the preparation of the dark-state (1)
and study the corresponding quantum dynamics, focus-
ing first on the effect of the cavity decay. To this end,
consider an ensemble of N four-state atoms, consisting of
two (meta-)stable states |+ 〉 , | − 〉 serving as our effec-
tive spin-states and two excited states | e± 〉 . The atoms
are coupled to a single mode of an open cavity (cf. Fig.1)
with resonance frequency ωa, volume V and photon es-

cape rate κ driving the transitions | ± 〉 → | e± 〉 and
strong control fields Ω± with frequency ωc driving the
transitions | ∓ 〉 → | e± 〉 , respectively. The atom-cavity
field coupling strength is given by g = ℘/~

√

~ωa/2ε0V ,
where ℘ is the dipole matrix element of the transition.
We assume the control fields and the cavity mode to
be far detuned from the resonant transition frequency
ωres = ω± − ωe± between ground state and excited state
manifold. This allows us to adiabatically eliminate the
excited states and we obtain the effective Hamiltonian
(1) with S+ =

∑N
j σ+ =

∑N
j |+ 〉 jj 〈− | , S− = (S+)

†

and |∆| = |ωres − ωa,c|. For simplicity of the calculation
we assumed here that we can realize two independent
Λ-schemes according to Fig. (1) and neglect any pos-
sible hyper-fine structure in the excited states. While
this approximation is only true if the detunings from
the respective excited state is smaller than the hyperfine-
splitting in the excited state manifold, Hamiltonian (1)
is valid for more general conditions, when Raman pro-
cesses mediated by multiple virtual states, can be added
up [27, 28]. A more detailed derivation of the Hamilto-
nian, also including different detunings, can be found in
the supplementary material [29]. Assuming κ≫ |∆|, we
can neglect the occupation of the cavity mode and using
standard techniques [30] we obtain the master equation
in Lindblad form after tracing over the cavity modes

∂

∂t
ρ =− γcav

[

{

I†I, ρ
}

+
− 2IρI†

]

. (5)

Here {·, ·}+ denotes the anti-commutator, γcav =
g2Ω2/∆2κ with Ω2 = Ω2

+ + Ω2
−, I = sin θS+ + cos θS−

is the Lindblad-operator accompanying the emission of a
cavity photon, and we defined tan θ = Ω−/Ω+.

To compute the phase sensitivity δφ, we use (5) to
determine the time evolution of the expectation values of
the spin operators Sz and S2

x

d〈Sz〉
dt

= −γcav
[

cos2(θ)〈S+S−〉 − sin2(θ)〈S−S+〉
]

(6)

d〈S2
x〉

dt
= −γcav(sin(θ)− cos(θ)) (7)

〈
(

sin(θ)S− + cos(θ)S+
)

(SxSz + SzSx) + H.c.〉

Note that the dark state |ψspin 〉 , defined by (2), is in-
deed a steady state of (6-7). Equations (6-7) involve
higher moments of the spin, whose time evolution should
be computed independently. To avoid this complication
and obtain an analytic solution, we linearize the equa-
tions of motion around 〈Sz〉 ≈ −N/2. Defining the small
fluctuations as δSz = Sz + N/2 and using the approx-
imation 〈S2

x + S2
y〉 = 〈S2〉 − 〈S2

z 〉 ≈ N〈δSz〉 + N/2, we
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find

d〈δSz〉
dt

= −γcavN
[

cos(2θ)〈δSz〉 − sin2(θ)
]

, (8)

d〈S2
x〉

dt
= −γcavN

[

cos(2θ)〈S2
x〉+ (1− sin(2θ))

1

4

]

.(9)

The solutions to these equations decay exponentially in
time with an effective rate γeff = γcav cos(2θ)N . From
eqs. (8-9) we obtain the phase sensitivity in the steady
state as

δφ2 =
N(1− sin(2θ)) cos(2θ)
(

N cos(2θ)− 2 sin2(θ)
)2
. (10)

In Fig.2 we compare this approximate expression (dashed
curve) with the exact result obtained from Eq. (4) (solid
curve). The two curves significantly deviate only for
Ω+/Ω− ≈ 1−O(1/N), or equivalently θ ≈ π/4−O(1/N).
In this regime the present linearized approximation fails
because 〈δSz〉 = sin2(θ)/ cos(2θ) ≈ O(N). Note that, as
approaching the Ω+ = Ω− limit, the steady-state spin
squeezing reaches its maximal Heisenberg-limited value.
But, at the same time, the effective dark-state pumping
rate γeff tends to zero, making the spin squeezing process
extremely slow. This renders competing processes, as e.g.
spontaneous Raman scattering of individual atoms, very
important as will be discussed below.

Up to this point, we have restricted ourselves to the
manifold of total spin S = N/2. This approach is valid
if the system is initially prepared in the maximally po-
larized state |S = N/2, Sz = N/2 〉 because Hamiltonian
(1) commutes with the total spin S

2. Consequently, if the
system is initially prepared in a state with a different to-
tal spin, the final steady state will be different and will in
general contain a smaller amount of spin squeezing. This
is shown in Fig. 3(a), where we compare the linearized
solution with the exact numerical solution of the Lind-
blad equation (5) for N = 10 spins with different initial
conditions. The linearization works well only when the
spins are initially polarized, as would be expected.

So far our analysis completely disregarded the effect of
spontaneous Raman scattering of the individual atoms
into free space. Being a single atom process, it breaks
the conservation of the total spin and thus competes with
the squeezing process. To investigate the effect of sponta-
neous Raman scattering we introduce a spontaneous de-
cay rate γ ≪ |∆| to the states | e± 〉 . The corresponding
master equation is easily obtained using standard tech-
niques and reads

∂

∂t
ρ = −γcav

[

{

I†I, ρ
}

+
− 2IρI†

]

(11)

− γspont
∑

α=σ±,π

N
∑

j=1

[

{

Lj,α
†Lj,α, ρ

}

+
− 2Lj,αρLj,α

†

]

,
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FIG. 3. Time evolution of the phase sensitivity for N = 10
spins and Ω−/Ω+ = 0.2. Numerical solution of the mas-
ter equation, with fully polarized (solid curves) or randomly
generated (dashed-dotted curves) initial state, and mean-field
approximation (dashed curves). (a) The atoms are coupled
only to the cavity, i.e. γ = 0. (b) Finite scattering rate
γ 6= 0 with single-atom cooperativity χ = 1. Observe that
the steady state does not depend on the initial state.

The first term on the RHS of (11) is equivalent to (5),
whereas the second term describes the spontaneous Ra-
man scattering of atom j into free space with rates
γspont = γΩ2/∆2. The Lindblad-operators are given by
Lj,σ± = (cos θσ+ + sin θσ−)σ∓ and Lj,π = cos θσ+ +
sin θσ−. The numerical solution of (11) is shown in Fig.
(3b) for different initial conditions and N = 10 spins.
The spontaneous Raman scattering couples different to-
tal spin-S manifolds and, as expected, lifts the degen-
eracy between them. Consequently it leads to a mixed
but nevertheless unique steady state, characterized by a
unique density matrix, independent of the initial state,
and hence presents rather a feature than a detrimental
problem.
Still, Raman scattering leads to a reduction of the

achievable phase sensitivity. To quantify this effect we
obtain the contribution of the single-spin decay to the
time evolution of the collective variables, by using the
second row of (11) and obtain

d〈δSz〉
dt

= −γspont
[

〈δSz〉 − sin2(θ)N
]

, (12)

d〈S2
x〉

dt
= −2γspont

(

1− 1

2
sin(2θ)

)[

〈S2
x〉 −

1

4

]

,(13)

Adding (12-13) to the contribution of the collective cou-
pling to the cavity, eqs. (8-9), we find that in the steady
state the competition between the two processes leads to:

〈δSz〉∞ =
sin2(θ)

(

Ng2

κ +Nγ
)

Ng2

κ cos(2θ) + γ
, (14)

〈S2
x〉∞ =

1

4

Ng2

κ (1− sin(2θ)) + 2γ
(

1− 1
2
sin(2θ)

)

Ng2

κ cos(2θ) + 2γ
(

1− 1
2
sin(2θ)

)
.(15)

For a given single-atom cooperativity χ =
γcav/γspont = g2/κγ, the optimal value of the phase
sensitivity δφ can be obtained by numerically minimizing
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the corresponding expression with respect to the mixing
angle θ while keeping χ fixed. The resulting curve is
shown in Fig. 4 for N = 106. To gain insight into this
result, we will now separately investigate the limits of
small and large single-atom cooperativity.

If single-atom cooperativity is small, but χN ∼ 1, the
optimal spin squeezing is obtained for θ ≪ π/4. Ex-
panding eqs. (14-15) around θ ≈ 0 we obtain a phase
sensitivity δφ2 ≈ 1

N

(

1−Nχθ + 4θ2
)

with the optimum
value obtained for θ = Nχ/8

δφopt =
1√
N

(

1− χ2N2

32

)

. (16)

It should be noted that due to the collective enhancement
by a factor of N , one gains a quadratic improvement in
the phase sensitivity even for small cooperativities.

If the cooperativity is larger, i.e. χN ≫ 1, the op-
timal squeezing is obtained for Ω+ ≈ Ω− and one may
näıvely expect the linearization to fail. However, to ren-
der the problem tractable we nevertheless perform the
large-N expansion and explicitly check the validity of the
obtained results below. To obtain the scaling of the phase
sensitivity we expand eqs. (14-15) around θ = π/4 − ǫ.
For small ǫ ∼ 1/

√
N ≪ 1 and neglecting terms of order

1/N we find δφ2 = 1
N

1+2Nχǫ2

2Nχǫ , which has a minimum at

ǫ =
√

1/2Nχ. This leads to a sensitivity

δφ =

(

2

χN3

)1/4

. (17)

Note that, for the optimal value of θ, the ensemble is still
mostly polarized, as can be checked by explicitly com-
puting 〈δSz〉 ≈ χ+1

4χǫ ∼
√
N . This observation provides

a self-consistency check for our linearization procedure
in the limit of a large ensemble, where

√
N ≪ N . Eq.

(17) shows that the achievable phase sensitivity scales as
δφ ∼ N−3/4 and thus offers a significant improvement
over the SQL. With respect to other proposals with a
similar scaling [16, 19, 31], our approach deterministi-
cally generates spin squeezing in a steady state by op-
tical pumping and can thus potentially be more robust
against external perturbations.

A possible experimental realization could be set up
in 87Rb using the clock states |F = 1,mF = 0 〉 and
|F = 2,mF = 0 〉 in the 5S1/2 ground-state manifold.
Circularly σ+-polarized cavity and control fields cou-
ple these states to the states |F = 1,mF = +1 〉 and
|F = 2,mF = +1 〉 of the 5P1/2-manifold. In this case
the inclusion of the hyper-fine structure leads to an ef-
fectively larger Raman rate, as the scattering path-ways
via the two hyper-fine state interfere constructively for
suitably chosen detunings (see Supplementary Material
[29]). For current experiments [18], we have N ≈ 106 and
χ ≈ 0.1, predicting a phase sensitivity δφ/δφSQL ≈ 0.07,
i.e. an improvement of more than one order of magnitude

FIG. 4. Optimal phase sensitivity in the steady state, in the
presence of single spin decay for N = 106. The solid curve
is given by the numerical minimization of eqs.(14-15). The
dashed-dotted and dashed curves are eqs. (16-17), respec-
tively.

with respect to the SQL.
We now discuss two additional effects related to the ex-

perimental realization of the proposed model. First, in a
multi-level atom (such as the suggested 87Rb), the spon-
taneous Raman scattering can lead to states outside of
the effective four-state system. Because, as shown above,
the squeezed steady state is (mixed but) unique and is
achieved from any intial state, we can use additional op-
tical pumping fields to repump the atoms into the correct
configuration. In the case of 87Rb this can be achieved
through linearly polarized fields resonantly driving the
F = 1 → F ′ = 1, F = 2 → F ′ = 2 and ∆mF = 0
transition. These fields do not couple directly to the
clock states |F = 1,mF = 0 〉 and |F = 2,mF = 0 〉 and
therefore act as a repumping field for the proposed four-
state scheme. The repump processes can be easily incor-
porated in our formalism in the form of additional single-
atom scattering channels [29]. These processes effectively
increase the single-atom scattering rate and reduce the
cooperativity χ. In addition, the use of a large detun-
ing ∆ makes possible to obtain repumping-rates that are
much larger than the decay-rate into the external states
and to minimize the loss of atoms into these states. We
conclude that our results, and in particular (17), are valid
even in the presence of additional repumped decay chan-
nels, provided that the cooperativity rate χ is computed
with respect to the total linewidth of the excited states.
Second, in the ideal model (1), we assumed a spatially

homogeneous coupling of the atoms to the cavity mode,
which can be approximately achieved only in a ring cav-
ity. In a standing-wave cavity the off-resonant Raman
coupling gΩ±/∆ depends on the position of the atoms
and can be either positive or negative, leading to a cancel-
lation of spin-squeezing. This can be solved by localizing
the atoms in space and choosing an appropriate geom-
etry for the control fields and the cavity mode, such as
to make all coupling-constants having the same sign, as
experimentally shown in Ref. [18]. In this case, the sym-
metry of the collective state is preserved, leading only to
a small reduction of the effective spin cooperativity.
To summarize, we presented a method for the deter-
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ministic generation of spin squeezed states in a driven
ensemble of effective two-state atoms in a strongly dis-
sipative cavity. The generating process can be under-
stood as optical pumping into a non-equilibrium steady
state of the atom that at the same time is a dark-state
with respect to the cavity decay. Introducing sponta-
neous Raman scattering we showed that the squeezed
steady state is unique and does not depend on the ini-
tial state of the system. We discussed the effect of the
single atom spontaneous Raman scattering on the achiev-
able phase-sensitivity and found that it scales favorably
with the single-atom cooperativity, indicating that the
present method can be of direct importance for, e.g., op-
tical atomic clocks.
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