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We construct a hydrodynamic theory of noisy, apolar active smectics, in bulk suspension or
on a substrate. Unlike purely orientationally ordered active fluids, active apolar smectics can be
dynamically stable in Stokesian bulk suspensions. Smectic order in these systems is quasi-long-
ranged in dimension d = 2, and long-ranged in d = 3. We predict reentrant Kosterlitz-Thouless
melting to an active nematic in our simplest model in d = 2, a nonzero second-sound speed parallel
to the layers in bulk suspensions, and that there are no giant number fluctuations in either case.
We also briefly discuss possible instabilities in these systems.

Equilibrium Condensed Matter Physics owes its rich-
ness largely to of the profusion and complexity of phases
of equilibrium matter: crystals; nematics [1]; partially
translationally ordered systems like smectics A[1] and
discotics[1], and hybrids like the hexatic B[2]; to name
a few. Beyond the equilibrium domain, in particular in
systems of “active particles” [3], the number of possi-
bilities increases[4], but very few of these have actually
been studied; nearly all past work has focused on active
particles in a state of orientational order [4–6]. Thus,
in understanding active matter, we are roughly where
we would be in understanding equilibrium systems if we
knew only the nematic liquid crystal.

The few active matter phases that have been thor-
oughly studied exhibit very different fluctuation [7–11]
and flow [12–17] behavior from their equilibrium coun-
terparts. They can order in spatial dimensions in which
their equilibrium analogs cannot[7] and, paradoxically,
they exhibit far larger density fluctuations [7–11] than
any equilibrium system. Do translationally ordered ac-
tive systems[14, 18] exhibit similar phenomena? This
paper provides a partial answer, for active systems with
spontaneously broken translation-invariance in one direc-
tion – active smectics. Specifically, we consider apolar
systems of particles with mean orientation axis along the
layer normal (i.e., Smectics A [1]), with active stresses
[15] pulling in or pushing out, i.e., contractile or exten-
sile, along that axis.

This work is a major step in the exploration of the
varieties of active order; it probes whether dramatic
differences between active and equilibrium liquid crys-
tals are unique to orientational order; it is timely be-
cause slight modifications of models of ordering in bi-
ological systems yield layered phases [19]; and finally
and most importantly, it is relevant to the many ob-
served striped nonequilibrium steady states including the
Rayleigh-Bénard problem [20, 21], systems of shaken rods
[22], dense collections of rod-shaped bacteria [23] or bi-

ological macromolecules, and chemical reaction-diffusion
systems [24].

In this paper we report our results for two of the many
possible models with this spatial symmetry; results for
three others will be presented elsewhere[25]. Our first,
and simplest, model treats the dynamics of stripes ignor-
ing all conserved quantities, and applies to convection
roll patterns [21, 26], and spontaneously layered phases
of self-driven apolar entities, reproducing or dying while
in motion [27], on a substrate which serves as a momen-
tum sink. The second is bulk layered systems in a back-
ground fluid with both number and momentum conserva-
tion, which we treat in both the Stokesian (i.e., viscosity-
dominated) limit and at large length scales where accel-
eration dominates over viscosity.

Our principal result: over a finite range of parameter
space, apolar active smectic order is dynamically stable
and long-ranged in the presence of noise in dimension
d = 3 and quasi-long-ranged in d = 2, in contrast to
equilibrium smectics [1, 28]. The dynamical stability of
Stokesian apolar active smectics is in sharp contrast to
the generic instability of bulk active orientationally or-
dered phases in that limit[12]. These conclusions about
stability reinforce and extend the findings of [18]. Our
theory therefore offers the first known examples of smec-
tic long-range order in a physically accessible dimension;
a two-dimensional smectic that is stable against disloca-
tions; and a mechanically stable Stokesian ordered phase
of active matter, with important implications for experi-
ments. We show further that, unlike their orientationally
ordered counterparts [4, 5, 7, 10], apolar active smectics
have finite concentration fluctuations; and that bulk ap-
olar active smectics have a nonzero ”second sound” mode
in the plane of the layers, in contrast to equilibrium smec-
tics [1]. Finally, we find that apolar active smectics with
no conservation laws undergo a transition to an active
nematic as the concentration of active particles is varied.
In two dimensions, “reentrance” [29] necessarily occurs:
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the active smectic phase is flanked at large and at small
concentrations by the active nematic. Both transitions
are in the Kosterlitz-Thouless universality class [30].

We begin with the simplest case, dealt with briefly
in [18]: active elements whose number and momentum
are not conserved, spontaneously condensed into a uni-
directional fore-aft symmetric periodic structure, i.e., a
smectic A, with mean layer normal n̂0 along ẑ (Fig. 1).
This model applies to Rayleigh-Bénard stripes in a thin
fluid layer [20, 21]. The only hydrodynamic field in this
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FIG. 1. Schematic representation of a smectic A. Continuous
and dotted lines represent layers in the reference and a per-
turbed state respectively. The mean layer normal n̂0 and local
layer normal n̂, along with the ẑ and ⊥-axes, are shown, as is
the layer displacement field u specifying the displacement of
perturbed layers along ẑ.

case is the layer displacement u, whose long-wavelength
dynamics, retaining terms permitted by symmetry [31]),
to leading order in gradients and u, reads

∂tu = B̃∂2zu+D∇2
⊥u− K̃∇4

⊥u+ fu, (1)

where fu is a Gaussian, zero-mean spatiotemporally
white noise with variance 2∆. The term with coeffi-
cient D [32] is forbidden by rotation-invariance of the
free energy in an equilibrium smectic without an aligning
field but permitted here because rotation-invariance at
the level of the equation of motion, which is all one can
demand in an active system, does not rule it out [33]. It
says the local vectorial asymmetry of a curved layer leads
to directed motion as this is a driven system.

Symmetry does not fix the sign of D. A negative
D leads to an undulation instability [34]. The spa-
tial Fourier components u(q, t) for small wavevectors
q = (q⊥, qz)in the stable steady state of (1) for positive
D can readily be shown to have variance 〈|u(q, t)|2〉 =
∆/(B̃q2z + Dq2⊥). The real-space variance 〈(u(r, t))2〉 =∫
q
〈|u(q, t)|2〉 is thus finite in d = 3, corresponding to

long-range smectic order, and ∼ logL in d = 2 for sys-
tem size L, corresponding to quasi-long-range order[18].
This establishes our principal result for the simplest case.

Ignoring the subdominant K̃ term, Equation (1), suit-
ably rescaled, also describes the relaxational dynamics
of an equilibrium XY model with stiffness/temperature
ratio κ ≡ B̃(3−d)/2D(d−1)/2a2/(2π2∆). It then follows

from well-known results on the d = 2 XY model [30]
that topological defects (i.e., dislocations) in an active
smectic in dimension d = 2 unbind, driving the system
into the active nematic phase, when κ = 2/π, i.e., when
2π2∆/a2(B̃D)1/2 = π/2 . This locus is plotted in the
∆-D plane in figure 2(a).
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FIG. 2. Phase diagram of active smectics, in the activity D-
noise strength ∆ plane, for (a) d = 2 and (b) d = 3. Straight
lines indicate approximate loci mapped out in this parameter
space by varying the concentration c0 of active particles with
other parameters fixed.

We expect that the purely active quantity D ∝ c0,
where c0 is the concentration of active particles, and that
the noise strength ∆ gets an active contribution ∝ c0,
and a c0-independent thermal part ∝ kBT . Hence, vary-
ing c0 maps out a straight line with positive intercept
on the ∆-axis in the ∆-D plane, as illustrated in figure
2(a). As is clear from that figure, this experimental locus
can only enter the active smectic region by crossing the
active smectic to active nematic phase boundary twice.
Hence our conclusion that re-entrance is inevitable in two
dimensions for these systems.

In d = 3 as well, the transition to a nematic for this
model is in the XY universality class. However, equilib-
rium smectic order at D = 0 exists at low enough T , so
the phase boundary ends at ∆c > 0 on the ∆ axis, but
its slope at D = 0 diverges. To see this note that when
approaching the transition from D = 0, D becomes sig-

nificant in (1) when D/ξ2⊥ ∼ K̃/ξ4⊥, i.e., ξ⊥ ∼
√
K̃/D,

where ξ⊥ ∝ |∆−∆c|−ν⊥ is the equilibrium in-plane cor-
relation length for smectic order [35] at D = 0, imply-
ing a positive shift CD1/2ν⊥ in ∆’s critical value, where
C is a constant. Theory [35] and experiment [36] find
1/2ν⊥ < 1, so the phase boundary in figure 2(b) has in-
finite slope as D → 0, as illustrated in the figure. That
∆c(D = 0) > 0 means that re-entrance is not inevitable;
see locus 3 in figure 2(b).

We next consider active smectics with constant parti-
cle number, suspended in an incompressible fluid. The
conserved momentum density g and active-particle con-
centration c and the broken symmetry displacement field
u are the slow variables. The particle + fluid mass den-
sity ρ = ρ0 = constant and ∇ · v = 0, where v ≡ g/ρ is
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the velocity field. Conservation of total momentum reads
∂tg = −∇ · σ, with linearized stress tensor

σ = pI− η(∇v + ∇vT ) + σ(el) + σa + σN , (2)

with p the fluid pressure, η the viscosity tensor, and the
elastic force density −∇ · σ(el) = −nδF/δu, with

F =
1

2

∫
ddx

[
B(∂zu)2 +K(∇2

⊥u)2 +A(δc)2 + 2Cδc∂zu
]
.

(3)
Here B and K are layer compression and bend moduli
respectively, A is the osmotic modulus, and C is a cross-
coupling. The active stress [5, 12] σa = −Wcn̂n̂, where
n̂ ≡ (ẑ−∇u)/|ẑ−∇u| is the local normal to the smectic
layers, and negative and positive activity W per parti-
cle correspond respectively to extensile and contractile
stresses, and σN is noise.

The resulting equation of motion for v, linearized in v,
u and δc = c− c0, with c0 the mean concentration, reads

ρ0∂tv = −∇p+ ẑ[B∂2zu−K∇4
⊥u+ (C +W )∂zδc]

−Wc0(ẑ∇2
⊥u+ ∂z∇⊥u) + ∇ · (η∇v) + fv,

(4)

where fv = ∇ · σN is a momentum-conserving noise,
and 〈σNij (0, 0)σNkl(r, t)〉 = 2∆ijklδ(r)δ(t). For simplic-
ity, and free from fluctuation-dissipation constraints [37],
we’ll take ∆ijkl = ∆v(δikδjl + δilδjk) and ηijkl = ηδjkδil.
The linearized hydrodynamic equation of motion for u is

∂tu = vz + B̃∂2zu+D∇2
⊥u− K̃∇4

⊥u+ C̃∂zδc+ fu;

(5)

where the noise fu has statistics as in (1) [38].
Number conservation implies ∂tc = −∇ · Jc. Gradient

expanding the current J subject to the symmetry con-
straints (rotational and translational invariance) gives:

Jc = −ẑ[(Az −W c)∂zδc+W cc0∇2
⊥u+ Czz∂

2
zu]

−∇⊥[A⊥δc+ (C⊥z +W cc0)∂zu] + f c (6)

where the Gaussian noise f c = (f c⊥, f
c
z ) has variance

2∆c
⊥, 2∆c

z transverse to and along z respectively. In
(6) we have included an active current [9] W c∇ · (cn̂n̂)
where W c is a phenomenological coefficient. In an equi-
librium two-component smectic the constraints W c = 0
and C⊥z/Czz = A⊥/Az = ∆c

⊥/∆
c
z would apply. For sim-

plicity, we take ∆c
⊥ = ∆c

z ≡ ∆c, C⊥z = Czz = E, and
A⊥ = Az ≡ G.

We solve (4) in the Stokesian limit and insert the
resulting v in (5). The spatial Fourier transforms of
Φ ≡ −∂zu and δc obey

∂tΦq = −Mq{[Bq2z +Wc0(q2z − q2⊥) +Kq4⊥]Φq

−(C +W )q2zδcq}+ [∂tΦq]P − iqz(fuq +
Pzj,qf

v
j,q

ηq2
) (7)

∂tδcq = (Eq2 +2W cc0q
2
⊥)Φq− (Gq2−W cq2z)δcq− iq ·f cq

(8)
where Mq ≡ q2⊥/ηq

4, Pzj,q = δzj − qzqj/q2, and [∂tΦq]P
summarizes the “permeative” B̃, K̃, C̃,D terms from (5),
which are of higher order in wavenumber than those
shown explicitly in (7).

Suppose B > CE/D = C2/A, so that when activity
W = 0 the smectic state is stable. Let |W | > C > 0;
a similar analysis holds for C < 0. At small q, where
[∂tΦq]P is negligible, it is clear from (7) that negative
(i.e., extensile) W can lead to an instability with q along
z, i.e., a modulation in layer spacing. However, the layer
compression modulus B always stabilizes this when (B−
|W |c0) > 0. Thus, the system is stable for small enough
|W |, establishing one of our main results.

For contractile active stresses W > 0, we see from (7)
and (8) that the most unstable modes have q in the ⊥
direction, in which neither the layer compression elastic-
ity nor the coupling to the concentration act. Hence, the
instability threshold for W vanishes in the limit of large
system size, as in [12, 13]. The instability causes splay
and self-generated flow, as in active nematics [12, 13]. For
smectics, this is a spontaneous version of the Helfrich-
Hurault [1, 34] undulation instability.

The instability that arises in the extensile (W < 0)
case when |W | > B is interesting. Equations (7) and (8)
have the same form as the linear part of the Fitzhugh-
Nagumo [39, 40] equation, which exhibits sustained os-
cillations under rather general conditions. We speculate
that such oscillations could also occur here; i.e., a breath-
ing smectic. We will explore this in future work[25].

We now turn to the statistics of fluctuations in the
bulk Stokesian limit. It is clear by inspection that (7)
and (8) will have a mode each with frequency ∼ q0 and
q2 at small q, corresponding primarily to stress relax-
ation and concentration respectively. We use the clear
separation of these timescales to simplify their evalua-
tion from (7), (8): for q � q

>
≡ B/

√
ηE(C +W ), δc

can be shown to be negligible in (7) for the purpose of
evaluating the variance of u and Φq in(8) can be elimi-
nated in favor of δcq by treating Φq as fast in (7). On the
other hand the Stokesian approximation ρ0∂tv � ηq2v
can be shown to hold if and only if B/η � ηq2, which
requires q � q

<
≡
√
Bρ0/η. To estimate parameters to

see when the ratio q>/q< =
√
Bη/ρ0E(C +W ) � 1 is

large, we argue that an order-unity splay of the smectic
layers, i.e., |∂z∇⊥u| ∼ 1/a, should give a particle current
∼ O(c0v0), where a is the layer spacing and v0 the typ-
ical propulsion speed. This yields E ∼ c0v0a, where a
is the smectic layer spacing, assumed comparable to the
particle size. Estimating in addition C ∼ W ∼ B/c0 we
find

q
>
/q

<
∼
√
η/ρ0v0a = 1/

√
Re , (9)
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where Re ≡ ρ0v0a/η is the Reynolds number of an in-
dividual particle. Thus we see that, provided individ-
ual swimmers are in the low Reynolds number limit,
our two approximations are valid over a large range
q< � q � q>, and can be brought to bear on (7) and
(8). The displacement variance is thereby found to be

< |u(q, t)|2 >=
∆v

η [Bq2z +Wc0(q2z − q2⊥)]
. (10)

This scales like 1/q2 for all directions of q, precisely as
in the simplest model considered earlier. Hence, like
that model, the Stokesian apolar active smectic also ex-
hibits smectic translational order that is long-ranged in
the presence of noise in dimension d = 3 and quasi-long-
ranged in d = 2. The δc correlator takes the form

< |δc(q, t)|2 >=

∆cq2

Gq2 −W cq2z − (Eq2 + 2W cc0q2⊥)(C +W )q2z/Gq

(11)

where Gq ≡ Bq2z +Wc0(q2z − q2⊥).
As is clear from our discussion above, at sufficiently

long wavelengths (i.e., for q < q<), the Stokesian ap-
proximation must break down. We must then take the
acceleration (∂tv) into account in equation (4). The com-
plete hydrodynamics in this case will be presented else-
where [25]; here we will limit ourselves to the two most
important results: that the second sound speed is finite
even for propagation within the plane of the smectic lay-
ers (in which direction this speed vanishes in equilibrium
smectics[1]), and that the smectic translational order is
long-ranged in the presence of noise in dimension d = 3
and quasi-long-ranged in d = 2, in contrast to equilib-
rium smectics, which have only quasi-long-ranged order
in d = 3[1] and short-ranged order in d = 2[28].

Fourier-transforming (4), (5), and (6) in space and
time and defining θq to be the angle between q and the
z-axis yields, at the longest wavelengths, a pair of sound
modes with frequency ω(q) = ±c(θq)q− iΓ(θq)q2/2 with
direction-dependent second sound speed and damping co-
efficient

c(θq) ≡ | sin(θq)|

√
[B +Wc0] cos2(θq)−Wc0 sin2(θq)

ρ0

(12)

Γ(θq) ≡
(
η

ρ0
+ B̃ cos2(θq) +D sin2(θq)

)
. (13)

respectively. Note that the second sound speed does not
vanish for propagation parallel to the layers (θq = π/2);

instead, it goes to
√
−Wc0/ρ (recall that W < 0 in the

stable regime). Note also that this sound speed would
vanish in the absence of activity W = 0, recovering the
well-known[1] result for an equilibrium smectic.

With an extension of the same algebra, we find the
variances of u and δc are:

< |u(q, t)|2 >=[
ρ−10 ∆vq

2 + ∆Gq + (C +W )2q2z(∆c
⊥q

2
⊥ + ∆c

zq
2
z)/Gq

]
GqΓ(θq)q2 + (C +W )q2zCq

,

and

< |δc(q, t)|2 >=

(∆c
⊥q

2
⊥ + ∆c

zq
2
z)

(Az −W c)q2z +A⊥q2⊥ − (C +W )q2zCq/Gq

where Gq is defined after (11), and Cq ≡ Czzq
2
z +

(C⊥z + 2W cc0)q2⊥. Since once again the variance <
|u(q, t)|2 >∝ 1/q2 for all directions of q, we again find
that translational order is long-ranged in d = 3, and
quasi-long-ranged in d = 2, while the fact that the vari-
ance < |δc(q, t)|2 > is finite as q → 0 for all directions of
q again implies that there are no giant number fluctua-
tions.

In conclusion, we have constructed the dynamical
equations for active smectics, both in bulk suspensions
and in confined systems in contact with a momentum
sink. Our theory is generic, applicable to any driven
system with spontaneous stripe order and appropriate
conservation laws. We show, extending [18], that noisy
active smectic order is long-ranged in dimension d = 3
and quasi-long-ranged in d = 2 for all dynamical regimes,
and that active smectic suspensions have a nonzero sec-
ond sound speed parallel to the layers. For d = 2 we pre-
dict a Kosterlitz-Thouless transition from active nematic
to active smectic, with a re-entrant nematic at low con-
centration. We show that smectic elasticity suppresses
the giant number fluctuations and extensile instabilities
that occur in active nematics.

Our results should apply to a wide range of active
systems, including horizontal layers of granular matter
agitated vertically or fluids heated from below. Exten-
sions to active mesophases in agitated 2DEGs [41], where
Coulomb and magnetic-field effects enter, will be dis-
cussed elsewhere[25]. We look forward to detailed ex-
perimental tests of our predictions.
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