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Arrays of suitably patterned and arranged magnetic elements may display artificial spin-ice struc-
tures with topological defects in the magnetization, such as Dirac monopoles and Dirac strings.
It is known that these defects strongly influence the quasi-static and equilibrium behavior of the
spin-ice lattice. Here we study the eigenmode dynamics of such defects in a square lattice consisting
of stadium-like thin film elements using micromagnetic simulations. We find that the topological
defects display distinct signatures in the mode spectrum, providing a means to qualitatively and
quantitatively analyze monopoles and strings which can be measured experimentally.

Spin ices are magnetic structures in which the interac-
tions lead to frustration resulting in complex magnetic
ordering and collective behavior [1–3]. Artificial spin-
ice lattices are patterned nanoscale structures in which
each element is small enough to have essentially uni-
form magnetization. The geometrical arrangement of
the structures in the lattice leads to frustration by de-
sign. Examples of artificial spin ice are the Kagome
lattice [4] and the stadium square lattice, consisting of
stadium-shaped elements on a square lattice [5–7]. The
equilibrium configuration and magnetization reversal of
such lattices have been the subject of intense study [8–
11]. Topological defects, in which the magnetization at a
vertex is in a one-in-three-out (or three-in-one-out) con-
figuration [12] have been observed in square lattices [5]
and in Kagome lattices [13]. Such defects are simi-
lar to Dirac monopoles [14] and typically occur in pairs
(e.g. monopole-antimonopole) connected by a defect
string, or “Dirac string”, along which the magnetiza-
tion is reversed with respect to a lattice reference state.
Dirac strings have been observed in Kagome lattices [15]
and square lattices [10]. (Fig. 1). Recent studies have
shown that these defects profoundly affect the equilib-
rium behavior and the magnetization reversal of such
lattices [8, 10, 11, 16–19]. An interesting, yet unexplored
question is whether the presence of such defects affects
the resonant dynamics of the spin-ice lattice. Here, we
investigate the frequency spectrum of eigenmodes, or res-
onances, of topological defects in a square spin ice lattice
using micromagnetic simulations. We show that each
topological defect displays distinct and localized features,
both spatially as well as in frequency. These features act
as a fingerprint for the type of defect and moreover allow
to quantify the number of defects present in the lattice.
We also show how spectral features in a lattice arise from
the magnetostatic coupling between the edge-like modes
of isolated elements. The coupling leads to multiplets
that are split depending on the local magnetization con-
figuration. In addition, the fundamental uniform mode
of a single stadium is split in the presence of topological

Figure 1. (Color online) a) Simulated singly-charged
monopole pair (G+G−) linked by a Dirac string (DS). Vor-
tices V form along the string. The reference state (RS) of the
lattice is shown in pale blue, while the string and monopoles
are highlighted. b) Doubly-charged monopoles can also be
observed experimentally, although relatively rarely [5]. In
this case, each vertex with a doubly-charged monopole leads
to the formation of an adjacent oppositely-charged monopole
(for example G− forms next to a G∗+ vertex). The colormap
corresponds to the projection of the magnetization along the
(11) direction of the string; the magnetic charge is taken as
positive when the magnetization points out of the vertex.

defects.

We have studied the resonances of square spin ice
lattices consisting of 112 Permalloy (Py) elements
(Fig. 2a) with micromagnetic simulations using a fully
three-dimensional finite-element algorithm based on the
Landau-Lifshitz-Gilbert equation [20]. Each element
(stadium) is 290 nm long, 130 nm wide, 20 nm thick
and is discretized into about 22800 tetrahedral elements,
corresponding to a cell size of about 3 nm3. The lattice
constant of the array is 390 nm. The material parameters
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Figure 2. (Color online) (a) Simulated lattice composed of 112 magnetic elements. It contains four monopole-antimonopole pairs
connected by Dirac strings extending over 28 elements. (b) Evolution of the magnetization dynamics spectrum with increasing
string length and number of monopole-antimonopole pairs compared to the reference state. The shaded labels correspond to
the main, distinct signatures of the topological defects. The amplitude units are identical in all cases.

chosen for Py are the following: A = 13 pJ/m (exchange
constant), µ0Ms = 1.0 T, and zero magnetocrystalline
anisotropy [21]. We prepared a reference state (RS) of
the lattice [22] by saturating the array along the (11)
direction and adiabatically removing the external field
(see Fig. 1). The system then relaxes into a state with
the magnetization oriented along the +y direction in the
vertical elements and along the +x direction for the hor-
izontal elements of the array. We arbitrarily insert topo-
logical defects with charges ±1 and ±2 (G± and G∗±,
respectively) connected by Dirac strings (DS) of vari-
able length corresponding to typical observed configura-
tions by reversing the magnetization in selected stadiums,
and subsequently relaxing the magnetization (see Fig. 1).
The dynamics and spectrum of eigenmodes of the lattice
is then obtained by applying a short perturbation (5 mT
field pulse in the (11) direction for 20 ps) and integrating
the LLG equation in time.
The excitation spectrum of the RS is shown in Fig. 2(b)
as the grey, filled area. It is characterized by a few promi-
nent peaks corresponding to distinct eigenmodes. The

first one (at position 1 ), slightly above 2 GHz, cor-
responds to edge excitations of the outermost stadium
elements at the boundary of the lattice. A weaker mode
appears above 4 GHz corresponding to edge excitations
of the magnetostatically coupled elements inside the lat-

tice. Two modes, labeled 4 , are visible slightly above
5 GHz, in which the elements on the boundary of the
lattice display higher order edges modes that couple to
modes on elements adjacent to the boundary elements.

Above 6 GHz, label 5 indicates a mode correspond-
ing to higher-order edge oscillations of the individual el-
ements. This mode is split: owing to their smaller mag-
netostatic coupling, the elements at the boundary of the
lattice oscillate at a slightly lower frequency than ele-
ments in the interior of the lattice. Finally, a mode at

8 GHz (position 6 ) corresponds to the ferromagnetic
resonance in which the oscillation is approximately uni-
form in the interior of the elements. The colored lines

in Fig. 2(b) depict the spectrum evolution as topologi-
cal defects and Dirac strings are inserted into the lattice.

Near mode 1 of the RS a new mode associated with
oscillations of the G+G− pairs appears. The amplitude
of this mode increases with the number of monopole-
antimonopole pairs. Later, we show that this mode is
close in frequency to the edge modes of the RS, but is
spatially localized at the monopoles. Therefore, it can be
distinguished from the edge modes either in the thermo-
dynamic limit or by using detection techniques sensitive
to the interior of the lattice [23]. Similarly, around 5 GHz,
a new mode associated with doubly-charged monopoles

unfolds alongside the RS mode at 4 . Above 6 GHz,
oscillations of the monopole-antimonopole pairs give rise
to a new mode within the lattice (red curve in Fig. 2 at

label 5 ). When a large number of pairs is present, this

mode becomes dominant (green curve). Finally, at 6
the ferromagnetic resonance peak is split and shifted in
the presence of Dirac strings. In addition to the mod-
ifications in the GS spectrum, two new resonances are

observed: mode 2 at 3 GHz corresponds to edge modes
of elements in the interior of a Dirac string while mode

3 at 3.5 GHz is due to oscillations of doubly-charged
monopoles.

We now investigate in detail the modes associated with
the different topological defects. Figure 3a refers to the

mode associated with a G+G− pair at position 1 in
Fig. 2. The static magnetization configuration is indi-
cated by the arrows in the first column. The color maps
(columns two and three) depict the oscillations of the
x and y components of the magnetization, respectively,
which are clearly localized at the monopoles. A splitting
in the frequency peak is associated with the G+G− reso-
nance (graph, fourth column): Monopoles located on the
boundary of the lattice (green curves) contribute to the
amplitude of edge oscillations of the RS configuration,
thereby increasing the amplitude of the RS mode (indi-
cated in the figure) slightly above 2.2 GHz. Monopole
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configurations in the interior of the lattice oscillate at a
lower frequency, around 2.1 GHz in this case (maroon
curves). The peak amplitude increases linearly with the
number of monopole pairs in both cases as shown in the
last column (simulations were carried-out for a maximum
number of five pairs). It is therefore possible not only
to identify the presence of monopoles in the lattice, but
equally to quantify the number of pairs, given a reference
point. Figure 3b refers to the oscillations of the stadi-
ums in the Dirac string connecting a G+G− pair posi-

tion 2 in Fig. 2. The spectral amplitude of this peak
increases linearly with the total number of vertices in the

string (string length). Figure 3c (position 3 in Fig. 2)
shows the oscillations of a doubly-charged monopole pair.
Again, we note the linear relationship between the num-
ber of monopole pairs and the spectral amplitude of the
mode. From this linear relationship, it can be concluded
that the different strings and monopoles are decoupled
from each other, even though they are rather closely

packed (see Fig. 2a) [24]. Finally, Fig. 3d (position 6
in Fig. 2 illustrates the splitting of the ferromagnetic res-
onance (FMR) mode [25]. The spatial oscillations are
shown here by projecting the magnetization along the
(11) direction of the string, as in Fig. 1, in order to op-
timize the contrast. The two color maps correspond to
spatial oscillations at the bulk FMR frequency of 8 GHz
(second column) and at 8.3 GHz (third column), show-
ing that the splitting stems from the Dirac string, which
oscillates at a higher frequency. The peak amplitude of
the mode at 8.3 GHz therefore increases with increasing
string length at the expense of the FMR peak at 8 GHz,
as shown in the amplitude plot (rightmost panel). Again,
a slight splitting occurs when the strings terminate on el-
ements on the boundary of the lattice (green curves) or
on elements in the interior lattice (maroon curves) be-
cause of the difference in magnetostatic coupling at the
string extremities.

The magnetostatic coupling at the vertices drives the
spectral features of the monopoles and the Dirac strings,
and the magnitude of this coupling depends on the lat-
tice constant. The experimental observability of these
features clearly depends on their robustness with respect
to variations in the lattice constant. Figure 4 shows sim-
ulations with different lattice constants for a given con-
figuration composed of one monopole-antimonopole pair
linked by a string spanning six stadiums. For compari-
son, the spectrum of a single stadium with initial equilib-
rium magnetization along the long axis of the element is
shown (full shaded graph). There are three main peaks
below 10 GHz for the single stadium. The first peak at
1.4 GHz corresponds to two modes of even and odd sym-
metry in which the dynamical part of the magnetization
is localized near the edges of the stadium. Similarly, the
peak at 5.7 GHz corresponds to two degenerate higher-
order edge modes (one even and one odd) with additional

Figure 3. (Color online) Examples of local oscillations of the
magnetization (∆m) characteristic for monopoles (a), Dirac
strings (b) and doubly-charged monopoles (c). The first col-
umn shows the static magnetic configuration. The second and
third columns respectively show the oscillations of the x and y
components of the magnetization. The plots show the change
in amplitude of the spectral signature of the different defects
relative to the reference state. The last row (d) illustrates the
splitting of the ferromagnetic resonance peak in the presence
of a Dirac string. Labels are from Fig. 2.

nodal lines near the edges. Linear combinations of these
edge modes couple magnetostatically in a lattice and give
rise to multiplets, the splitting of which depends on the
equilibrium structure of the magnetization at each vertex
and on the lattice constant. Some of these linear combi-
nations are localized near the vertices and are sensitive
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Figure 4. (Color online) Evolution of the spectral features
with decreasing element separation for an array containing
one monopole-antimonopole pair connected by a string of ten
elements, compared to a single stadium. As the lattice con-
stant of the array is reduced, the spectral features are red-
shifted while the amplitude of the ferromagnetic resonance
peak decreases. G: peak characteristic of the monopole pair
oscillations. DS: peak characteristic for the Dirac string os-
cillations.

to the local magnetization, and therefore to topological
defects near the vertices. Finally, the peak at 8 GHz
corresponds to the (bulk-like) uniform ferromagnetic res-
onance mode. In the presence of topological defects, with
low magnetostatic coupling (lattice constant of 450 nm)
the original peak at 1.4 GHz vanishes as the frequency
of the edge oscillations is blue-shifted to 2.8 GHz (in-
dicated by the square frame in the figure). Given that
monopole modes are connected to oscillations of the ele-
ment edges, a peak associated to the monopole pair also
appears at 3 GHz. At lower frequencies (1 GHz), another
distinct peak corresponds to oscillations of the monopole
pair. This peak is blue-shifted when the lattice constant
is decreased, and its frequency becomes comparable to
the frequency of the edge excitation at elements on the
lattice boundary at a spacing of 390 nm, as described ear-

lier (Fig. 2 1 ). An equally distinct peak corresponding
to the Dirac string oscillation appears at 2 GHz for a 450
nm lattice constant and is red shifted. The higher order
edge mode found in a single element (at 5.7 GHz) is ro-
bust: it persists for every lattice separation, eventually
splitting as described earlier. As expected, the frequency
of the ferromagnetic resonance mode remains unchanged.
It is interesting to note that even for a lattice constant of
450 nm, the elements within a lattice remain sufficiently
coupled to display features essentially different from the
single stadium spectrum.

In summary, the presence and nature of topological de-
fects display a one-to-one correspondence with the spec-
tral features, which thus provide a means of experimen-
tally identifying the presence of the different defects. The
frequencies of the modes lie well within the range of ex-
perimental detection techniques such as a broadband me-

anderline approach [26], with an AC field provided by
a microwave synthesizer and AC coils, or a pulsed field
provided by a microwave stripline. Starting in the RS,
applying a static reversal field with a magnitude close to
the coercive field of the lattice should generate enough
defects, Dirac monopoles and strings to provide sufficient
signal to noise [11]. This would also allow for an estima-
tion of the number of defects as the reversal field strength
is varied past the coercive field. Moreover, the spectral
amplitude of these features is proportional to the number
of defects present, enabling a quantitative analysis based
on the spectra. The appearance of localized modes at
topological defects enables new possibilities of manipu-
lating magnetization modes in spin-ice lattices, for ex-
ample by inserting monopole pairs using spin polarized
currents and propagating Dirac strings through the lat-
tice. This may allow emerging applications combining
magnonics, in which propagating spin waves in patterned
magnetic thin films are manipulated, with artificial spin-
ice lattices, in which localized spectral features based on
topological defects can be tailored.
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