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The capability to probe the dispersion of elementary spin, charge, orbital, and lattice excitations
has positioned Resonant Inelastic X-ray Scattering (RIXS) at the forefront of photon science. Here
we develop the scattering theory for RIXS on superconductors, calculating its momentum-dependent
scattering amplitude. Considering superconductors with different pairing symmetries we show that
the low-energy scattering is strongly affected by the superconducting gap and coherence factors.
This establishes RIXS as a tool to disentangle pairing symmetries and to probe the elementary
excitations of unconventional superconductors.
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Introduction In the past decade, resonant inelastic
x-ray scattering (RIXS) [1, 2] has made remarkable
progress as a spectroscopic technique, establishing it-
self as an experimental probe of elementary spin [3–8],
orbital [9, 10], and lattice excitations [11]. In quite a
number of cases, theoretical considerations have preceded
and stimulated these experimental advances, prominent
examples being the theoretical demonstration of the
presence of strong single-magnon scattering channels in
cuprates [12, 13] and iridates [14]. Being a photon-
in/photon-out spectroscopy, both the energy ~ω and the
momentum change q of the scattered photon are mea-
sured. As the energy and momentum lost by the photon
are transferred to intrinsic excitations of the material un-
der study, direct information on the dispersion of those
excitations becomes available. The resonant character of
the technique is due to the energy of the incident photon
being chosen such that it coincides, and hence resonates,
with an x-ray absorption edge of the system [1, 2]. This
year the energy resolution of RIXS has reached ∼30 meV
in the hard x-ray regime [7], will reach 50 meV in the soft
x-ray regime by building on present instrumentation [15]
and is designed to reach 11 meV at the Cu L-edges at the
NSLS-II presently under construction [16]. This brings
the RIXS energy resolution well into the regime of the en-
ergy gap of cuprate superconductors, which stretches out
to 119 meV for mercury-based high Tc systems [17]. Con-
sequently the fundamental question arises of how the su-
perconducting (SC) state leaves its fingerprints in RIXS
spectra — in particular whether and how RIXS is sen-
sitive to the phase and amplitude of the SC gap and to
quasiparticle excitations.
Probing the order parameter in unconventional super-

conductors is generally the first step for an investigation
of the pairing mechanism and of the character of the SC
state. Compared to the available spectroscopic methods,
such as scanning-tunneling spectroscopy (STS), photo-
emission spectroscopy, optical spectroscopy or inelastic
neutron scattering, RIXS uniquely combines the advan-
tages of bulk-sensitivity and availability of momentum

resolution while at the same time requiring only small
sample volumes. Here we show how the sensitivity of the
RIXS process to the dynamical structure factor (DSF)
of the electron spin and density in the SC state enables
the investigation of SC quasiparticle excitations. In par-
ticular, we find that the momentum dependence of RIXS
spectra is intrinsically determined by the pairing symme-
try, being sensitive not only to the magnitude of the SC
gap and to the presence of nodes on the Fermi surface
but also to the phase of the order parameter. This phase
sensitivity is due to the appearance of SC coherence fac-
tors which, for instance, in STS determine to large extent
the quasiparticle interference in the presence of impuri-
ties [18–24].
Dynamical structure factors in RIXS In what follows

we concentrate on the so-called direct RIXS process at
the transition metal (TM) ion L edges, in which the in-
coming photon resonantly excites the core shell 2p elec-
tron into the 3d shell which consequently decays into an
outgoing photon and a charge, spin, or orbital excitation
in the electronic system [2]. In this case the RIXS cross
section can be written as [2, 13, 25, 26]

Ie(q, ω) =
∑

f

∣

∣〈f |Ôq,e|i〉
∣

∣

2
δ(~ω − Ef + Ei), (1)

where |i〉 (|f〉) is the initial (final) state of RIXS pro-
cess with energy Ei (Ef ) and ~ω (q) is the transferred
photon energy (momentum). Furthermore, in the fast
collision approximation (FCA) [2, 13, 25, 26] the Fourier
transformed RIXS transition operator Ôq,e can be writ-

ten as Ôq,e = W c
eρq + Ws

e · Sq, where the operators

ρq =
∑

kσ d
†
k+qσdkσ and Sq are the density and spin of

conduction electrons [25–27]. The so-called RIXS form
factors W c

e and Ws
e depend on the TM ion, the specific

geometry of the experiment, and on the polarization e

of the incoming and outgoing photon — their precise de-
pendencies are provided in Refs. 13, 25, 26. In terms of
these form factors the RIXS cross section is

Ie(q, ω) = |W c
e |

2χc(q, ω) + |Ws
e|

2χs(q, ω), (2)
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where χc =
∑

f |〈f |ρq|i〉|
2δ(~ω − Ef + Ei) is the charge

and χs =
∑

f |〈f |S
z
q|i〉|

2δ(~ω−Ef +Ei) the spin dynam-
ical structure factor (DSF), where one assumes that the
spin DSF has the same momentum and energy depen-
dence for all the three different components of the spin
operator — as is the case of unconventional supercon-
ductors [31]. As is clear from the above, the amplitude
of the RIXS form factors W c

e and Ws
e can be tuned by

properly adjusting the experimental conditions in RIXS.
This implies that RIXS at L-edges can measure either
spin or charge DSF depending on the chosen polariza-
tion, which is a unique feature of RIXS spectroscopy.
Note that the FCA has been successfully used to describe
low energy excitations in RIXS, e.g., at the Cu L edge
of both undoped and doped cuprates (cf. theoretical cal-
culations [13, 25, 26] and experimental results with their
interpretation fully based on the FCA [6, 8, 10, 28]), at
the Fe L edge of the iron arsenides [29], and at the Ir
L edge in iridates [30]. It has also been shown theoreti-
cally that when the incoming photon energy in RIXS is
tuned to a TM ion resonant edge in a TM oxide, the FCA
describes the RIXS spectrum well [25].

In the following we concentrate on determining the
properties of DSF for different types of singlet-pairing
superconductors, and to be even more specific below we
consider the case of Cu ions in lattices with tetragonal
symmetry, i.e., the one which has direct relevance to the
high Tc superconductors. Our main aim in this context is
to establish how a variation of the phase of the SC order
parameter is reflected in the spin and charge DSF. Fol-
lowing the most direct theoretical inroad and avoiding
model-specific technical details, we performed calcula-
tions for a singlet-pairing superconductor with a SC order
parameter varying along the Fermi surface. Even if by
this electron correlations are not fully taken into account,
this approach is commonly used — and is very successful
to calculate quasiparticle interference in cuprates [20–
22, 33]. Besides this, in the supplemental material [32]
we show that it is actually possible to introduce strong
correlations between electrons into the calculations and
that such does not affect the main results on the SC elec-
tronic system presented below.

DSF for a superconductor Quasiparticle excitations
in a single band superconductor with singlet-pairing are
described by the HamiltonianH−εFN =

∑

k Ek γ†
kσγkσ,

where Ek =
√

ε2k + |∆k|2 is the quasiparticle energy
dispersion depending on the SC gap function ∆k and
on the dispersion of the bare electrons εk. The Bo-
goliubov quasiparticle operators γkσ are related to the

d electron operators via dk↑ = u∗
kγk↑ − vkγ

†
−k↓ and

dk↓ = u∗
kγk↓+ vkγ

†
−k↑, with |uk|

2(|vk|
2) = 1

2
(1± εk/Ek)

and u∗
kvk = 1

2
∆k/Ek. The Bogoliubov transformation

allows the evaluation of the DSF for a SC by evaluat-
ing the transition amplitudes 〈f |ρq|i〉 and 〈f |Sz

q|i〉 be-
tween the ground state |i〉 and any excited state |f〉 of

FIG. 1: (color online) Order parameters of an anisotropic s
wave (a) and d wave (b) superconductor with an isotropic
Fermi surface (solid line). The order parameter vanishes (has
maxima) at the nodal points kN (anti-nodal points kA). (c)
Particle-hole excitations with and without sign reversal in
case of d wave pairing.

the Hamiltonian. At zero temperature, the excited states
which contribute to DSF have the form γ†

k+q,σγ
†
−k,−σ|g〉

with a transition energy of Ek+q + E−k. Using the Bo-
goliubov transformation one then finds that the DSF for
a superconductor reads

χc,s(q, ω) =
∑

k

[

1±
Re(∆k∆

∗
k+q)∓ εkεk+q

EkEk+q

]

× δ(~ω − Ek+q − Ek) (3)

where ± sign is for the charge (spin) DSF [34–36]. Thus,
the DSF is a sum over all momenta within the Brillouin
zone, where the transition amplitudes are strongly influ-
enced by the character of the SC state. Although quasi-
particle interactions substantially affect the DSF, they do
not alter its intrinsic sensitivity to the character of the
SC state (in particular to the symmetry of its gap func-
tion), as can be seen, e.g., at the random-phase approxi-
mation level [37], or by considering a strongly correlated
system with Hubbard interactions, see supplemental ma-
terial [32].
To determine in detail how the RIXS spectra of un-

conventional superconductors reflect the phase of the or-
der parameter, we consider (i) a d-wave pairing with
∆k ∝ (cos kx − cos ky) and (ii) an anisotropic s-wave
pairing with ∆k ∝ | coskx−cos ky|, i.e., two pairing sym-
metries which differ from each other only in the SC order
parameter phase. Maps of the considered gap functions
and the Fermi surface are shown in Fig. 1. In the s wave
case, the DSF χc(q, ω), due to the ’+’ sign in Eq. (3),
is non-zero all over the Brillouin zone, while in the d
wave case excitations combining momenta with opposite
phases of the order parameter, i.e., sign reversing pro-
cesses, are suppressed. Note that for the spin DSF this
situation is inverted.
Phase sensitivity The calculated quasiparticle spec-

tra for the above two pairing symmetries are shown in
Fig. 2(a) for a fixed and relatively large momentum trans-
fer q = kF , where kF is the Fermi radius. A detailed
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FIG. 2: (color online) Dynamical structure factor (DSF) in
a SC for an isotropic (a) and for a nested Fermi surface (b)
with transferred momentum q = (kF , kF )/

√
2 and q = (π, π),

for charge excitations (χc) with anisotropic s wave (solid line)
and d wave (dashed line), and for spin excitations (χs) with
d wave (solid line) and anisotropic s wave (dashed line) order
parameter.

expansion of the DSF for q ≪ kF is provided in the
supplementary materials [32]. Note that direct RIXS at
the L-edge in 2D cuprates allows momentum transfers
q . 0.87π [28] and therefore one is able to access mo-
mentum transfers q of the order of kF . Such momen-
tum transfers correspond to momentum vectors combin-
ing two anti-nodal points kA on the Fermi surface [see
inset of Fig. 2(a)] with the same gap value ∆kA

= ∆.
For such an excitation, the sign of the order parameter
in the s wave case is preserved whereas in the d wave case
it is reversed. Clearly the spectral weight at ~ω = 2|∆| in
the charge DSF is enhanced in the s wave case. On the
other hand, for the d wave case the sign reversal leads
immediately to a suppression of the DSF according to
Eq. (3). Therefore, the spectral weight at ~ω = 2|∆|
is expected to be very small which is confirmed by the
dotted curve in Fig. 2(a). On the other hand, spin DSF
is suppressed in the s wave case, while the sign reversal
enhances the spectral weight at ~ω = 2|∆|. Note that
due to the gap being equal in magnitude for both cases,
the obtained effect is entirely due to phase changes of the
SC order parameter along the Fermi-surface.

In unconventional superconductors, where the pairing
is generally considered as mediated by antiferromagnetic
spin fluctuations [38], the SC gap function is expected
to exhibit a sign reversal between the Fermi momenta
connected by characteristic wave vector Q of the spin
fluctuations [39]. The conduction electrons of such su-
perconductors show a tendency to Fermi-surface nesting
with a typical nesting vector of Q = (π, π). In Fig. 2(b)
the scattering intensity as function of energy for the two
pairing symmetries considered above are shown again,
but now for a perfectly nested cuprate-like Fermi surface
(see inset), with a transferred momentum equal to the
nesting vector. It is clear that, in comparison to the case
of an isotropic Fermi surface, the coherence peak in the
anisotropic s wave pairing case appears now strongly en-
hanced due to the nesting effect. As in the case of an

isotropic Fermi surface, sign reversing excitations occur-
ring in the d wave case in the charge DSF are strongly
suppressed, as well as sign preserving excitations in the
anisotropic s wave case in the spin DSF.
To highlight its strong dependence on the order param-

eter phase, we show in Fig. 3 the DSF for a fixed energy
~ω = 2|∆| as a function of momentum q in the entire
Brillouin zone, both for the anisotropic s wave and the d
wave pairing, for a perfectly nested Fermi surface. Due to
the nesting effect, coherence peaks are clearly visible in
the charge (spin) DSF in the anisotropic s wave (d wave)
case for any of the nesting vector q = (±π,±π), while
they are strongly suppressed in the d wave (anisotropic
s wave) case (Fig. 3). The case of an isotropic Fermi
surface is presented in the supplemental material [32].
Clearly the symmetry of the order parameter is reflected
by the symmetry of the charge and spin DSF spectrum.
Since the charge and spin DSF are complementary with
respect to the spectral suppression of the sign reversing
and sign preserving excitations, the phase sensitivity is
enhanced when these two components are fully disen-
tangled. This can be done by tuning the polarization
dependence in the form factors W c

e and Ws
e in Eq. (2).

Origin of the phase sensitivity It occurs that a strong
dependence on the SC order parameter phase in DSF is
found for transferred momenta q & 0.1kF and when the
transferred energy is close to twice the energy of the SC
gap ~ω ≃ 2|∆|. This sensitivity to the SC order parame-
ter phase can be better understood if we further confine
our discussion to the case where not only the transferred
momentum is rather large, i.e., q ≃ kF , but also the
momentum k is on the Fermi surface. The main con-
tributions to the DSF correspond in fact to those exci-
tations close to the Fermi surface which fulfill the con-
ditions εk ≪ ∆k and εk+q ≪ ∆k+q. Assuming an un-
conventional superconductor with a pairing governed by
a phase dependent order parameter ∆k = |∆k|e

iφk the
DSF in Eq. (3) for excitations near the Fermi surface
(~ω . 2∆) becomes

χc,s(q, ~ω) ≈
∑

k∈FS

[1± cos(φk − φk+q)]

× δ(~ω − |∆k+q| − |∆k|). (4)

Thus, the momentum-dependent intensity distribution of
the low energy DSF mainly represents the variation of the
SC order parameter phase along the Fermi surface.
Comparison with other spectroscopies In principle

also other two-particle spectroscopies (see, e.g., Ref. 2
for an overview) can be directly sensitive to the DSF of
superconductors. Even if none can match RIXS in mea-
suring both spin and charge DSF of superconductors, al-
ready probing either of the two is in general challeng-
ing as in, e.g., electron energy loss spectroscopy (EELS)
one cannot reliably measure spectra with high momen-
tum transfers, inelastic neutron scattering (INS) does not
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FIG. 3: (color online) Charge (χc) and spin (χs) DSF at fixed
energy ~ω = 2|∆|, as a function of transferred momentum for
an anisotropic s wave and a d wave SC with a nested Fermi
surface.

directly probe the charge DSF and non-resonant inelas-
tic x-ray scattering (NIXS) is extremely photon-hungry.
Nevertheless, transition amplitudes of the same type as
in Eqs. (3,4) are also encountered when determining the
scattering rate of conduction electrons in the presence of
impurities, as observed in the surface-sensitive STS [18–
24]. This is because Eqs. (3,4) have a similar structure
as the ones which are known to govern the quasiparti-
cle interference [in which case the transition amplitudes,
whose sum over the momentum k contribute to the DSF
in Eq. (3), are termed ‘coherence factors’] in the pres-
ence of impurities. Since the quasiparticle interference
patterns explored by STS have turned out to be very suc-
cessful in uncover the pairing symmetries of the uncon-
ventional SC [18–23], this gauges the potential of RIXS
to observe and unravel symmetries of SC pairing and
pairing-mediators. Compared to STS, however, RIXS
has a succinct conceptual advantage. Whereas the theo-
retical interpretation of STS in the framework of quasi-
particle interference relies crucially on the form of the
underlying impurity system showing various components
of scattering [24], in the case of RIXS the interpretation
of spectroscopic features does neither rely on the presence
of impurities in the superconductor nor on the modeling
thereof.
Conclusions We have shown that RIXS, in contrast

to other well-known two-particle spectroscopies, is di-
rectly sensitive to the spin and to the charge dynamical
structure factor (DSF) of a superconductor. In partic-
ular we have shown that the DSF of a superconductor

observed in RIXS is very sensitive to the symmetry of
the order parameter. This is rooted in the quasiparti-
cle spectra reflecting sign-reversing excitations at large
transferred momenta which arise for order parameters
with a phase that varies over the Fermi surface. This,
together with the recent experimental successes of RIXS,
including in particular the major enhancements in resolu-
tion and pioneering study of hole doped cuprates [6], es-
tablishes the potential of RIXS as a versatile and practi-
cal spectroscopic technique to investigate the fundamen-
tal properties of superconducting materials.
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