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Motivated by recent experimental detection of Neel-type ((π, π)) magnetic fluctuations in some
iron pnictides, we study the impact of competing (π, π) and (π, 0) spin fluctuations on the super-
conductivity of these materials. We show that, counter-intuitively, even short-range, weak Neel
fluctuations strongly suppress the s+− state, with the main effect arising from a repulsive contri-
bution to the s+− pairing interaction, complemented by low frequency inelastic scattering. Further
increasing the strength of the Neel fluctuations leads to a low-Tc d-wave state, with a possible in-
termediate s + id phase. The results suggest that the absence of superconductivity in a series of
hole-doped pnictides is due to the combination of short-range Neel fluctuations and pair-breaking
impurity scattering, and also that Tc of optimally doped pnictides could be further increased if
residual (π, π) fluctuations were reduced.

The proximity of the superconducting state (SC) to a
“stripe” spin-density wave instability (SDW) in the phase
diagrams of the recently discovered iron-based supercon-
ductors [1] (FeSC) prompted the proposal that SDW spin
fluctuations provide the pairing mechanism [2]. Indeed,
the Fermi surface (FS) of many iron pnictides consists of
electron pockets displaced from central hole pockets by
the SDW ordering vector QSDW = (π, 0) / (0, π) (see Fig.
1). In this situation, even weak SDW fluctuations may
overcome a strong on-site repulsion giving rise to an s+−

SC state, in which the gap function has one sign on the
electron pockets and another sign on the hole pockets [3].

However, the two electron pockets in Fig. 1 are con-
nected by the momentum QNeel = (π, π) suggesting that
Neel-type magnetic fluctuations may also be important
[4]. These fluctuations favor a d-wave SC state in which
the gap function has opposite sign in the two electron
pockets. On the theory side, first-principle and Hartree-
Fock calculations find that the Neel state is locally sta-
ble, but with a higher energy than the SDW state [5, 6],
while random phase approximation (RPA) calculations
performed in the paramagnetic phase find a peak in the
magnetic susceptibility at QNeel, which is however weaker
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Figure 1: (left panel) Schematic Fermi surface configuration
in the 1-Fe Brillouin zone, with two central hole pockets and
two electron pockets. (right panel) Self-energy diagrams of
the Eliashberg equations: normal component (upper panel)
and anomalous component (lower panel).

than the peak at QSDW [7].

Experimentally, neutron scattering measurements [8]
revealed that even at small x, Ba (Fe1−xMnx)2 As2 ex-
hibits spin fluctuations peaked at QNeel, in addition to
the SDW fluctuations peaked at QSDW. NMR measure-
ments [9] confirmed that these Neel fluctuations couple
to the conduction electrons. Because the entire family
of “in-plane” hole-doped Ba (Fe1−xMx)2 As2 compounds
(M = Mn, Cr, Mo) [10] displays SDW order at x = 0 and
Neel order at x = 1, we expect that competing Neel and
SDW fluctuations will be found across the whole mate-
rial family. Intriguingly, superconductivity has not been
reported in these materials to date [11], in contrast to
the electron-doped counterparts M = Co, Ni, Rh, Pt,
Cu, where SC is always observed [12].

There is also indirect evidence for Neel fluctuations
in the extremely electron-doped AyFe2−xSe2 compounds
[13]. In these materials, the near absence of FS pockets
in the center of the Brillouin zone suggests that SDW
fluctuations and the s+− state are disfavored, while the
square-like shape of the electron pockets is expected to
enhance the (π, π) fluctuations [14]. Chemical substitu-
tion on the A site or application of pressure [15], can
create a small pocket in the center of the Brillouin zone,
which could support (π, 0) fluctuations and s+− SC.

The effect of competing spin fluctuations on FeSCs is
thus of experimental and theoretical interest. In this pa-
per, we address the problem via a multi-band Eliash-
berg approach [16, 17] in which the effect of spin fluctu-
ations on electrons is determined from the one-loop self
energy (see Fig. 1). This approximation has been exten-
sively employed in studies of cuprates [18–20], ferromag-
netic SC [21], and pnictides [22]. Our calculation goes
beyond previous work [22] by incorporating both SDW
and Neel fluctuations, including the Coulomb pseudo-
potential, and using the experimentally determined spin
fluctuation spectrum instead of the single-pole approxi-
mation employed previously.

We find that the Coulomb pseudo-potential has only
a weak effect on the dominant s+− state but that even
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weak, short-range Neel fluctuations strongly suppress the
transition temperature T s−wave

c . If sufficiently strong,
the Neel fluctuations may induce a d-wave state, but the
transition temperature is found to be much lower than
the optimal Tc for the s+− state. The transition between
s+− and d-SC may either occur via an intermediate time
reversal symmetry-breaking s + id state [23, 24] or, if
the impurity scattering is stronger, via an intermediate
non-SC state separating the two regions (see Fig. 2).

To gain insight into the results, we use the functional
derivative methods of Bergmann and Rainer [25, 26]. We
find that the strong suppression of the s+− state comes
mostly from a repulsive s+− pairing interaction induced
by the Neel fluctuations, although pair-breaking inelastic
scattering plays some role. Finally, we discuss the impli-
cations of our results not only to the SC of the in-plane
hole-doped pnictides, but also to the value of Tc in the
FeSCs in general.

Our model consists of a two-dimensional FS with two
central hole pockets (Γ, density of states NΓ) and two
electron pockets (X and Y , density of states NX) dis-
placed from the center by the momenta (π, 0) and (0, π)
(Fig. 1) [27]. For simplicity, hereafter we assume that
these two hole pockets are degenerate - our results do not
depend on this simplification. Following Ref. [28], we set
r = NX/NΓ = 0.65. The electrons are coupled to two
types of low-energy bosonic excitations, namely, SDW
spin fluctuations peaked at (π, 0) / (0, π) and Neel spin
fluctuations peaked at (π, π). Experiment (Refs.[8, 29])
indicates that in the paramagnetic phase these excita-
tions are described by diffusive dynamic susceptibilities:

χ−1
i (Qi + q,Ωn) = ξ−2

i + q2 + γ−1
i |Ωn| (1)

Here, q is the momentum deviation from the order-
ing vector Qi (all lengths are in units of the lattice pa-
rameter a) and Ωn is the bosonic Matsubara frequency.
The quantity that actually enters the Eliashberg equa-
tions is the spectral function integrated over the momen-
tum component q‖ parallel to the FS and evaluated at

q⊥ = 0, i.e. ANeel (ω) =
´

dq‖ImχNeel

(

q‖, ω
)

. This spec-
tral function gives rise to the Matsubara-axis interaction

a(i) (Ωn) = ξi/
√

1 + |Ωn| γ−1
i ξ2i which enters the Eliash-

berg equations as described below. Note that the orbital
character of the low energy states varies with position
around the FS. In the Eliashberg formalism the result-
ing angular dependence of the interaction parameters is
averaged over the FS, so as shown in the Supplementary
Material the variation in the orbital character only affects
the values of the effective coupling constants.

The spin fluctuations in each momentum channel i are
described by two parameters: the Landau damping γi,
which sets the energy scale, and the correlation length ξi,
which sets both the strength and the spatial/temporal
correlations of the spin fluctuations. We will tune the
spectrum by varying ξi. Because the Landau damping
originates from the low-energy decay of the spin exci-
tations into electron-hole pairs, γi is determined by the
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Figure 2: Transition temperatures Tc of the s-wave (red/light
curve) and d-wave (blue/heavy curve) states as function of
the Neel magnetic correlation length ξNeel, for r = 0.65,
γNeel/γSDW = 0.33, λNeel/λSDW = 2, and µ∗ = 0.8. Tc,0 ≈

0.1γSDW is the s+− transition temperature for ξNeel = 0. The
shaded area denotes the regime where the two states have sim-
ilar transition temperatures and a possible s + id state may
occur. The dashed lines show the behavior of the system in
the presence of impurity scattering, with τ−1 ≈ 0.1Tc,0. The
inset shows the frequency dependence of the spectral function
ANeel (ω) of the Neel fluctuations for different values of ξNeel.

electron-boson coupling constant gi and the densities of
states. The coupling gSDW is set to yield T s−wave

c,0 ≈ 30

K. Following the experimental results of Ref. [8], we use
γNeel/γSDW ≈ 0.33 with γSDW ≈ 25 meV; the value of
gNeel follows from the relationship between γNeel/γSDW

and gNeel/gSDW. Finally, we set ξSDW = 5a through-
out our calculations, varying the correlation length of
the Neel fluctuations ξNeel. Our results do not change
significantly for smaller values of ξSDW.

To obtain the transition temperatures in the s and
d-wave channels we linearize the Eliashberg equations
in the superconducting quantities and solve the result-
ing equations for the anomalous component Wα,n and
the normal component Zα,n = ImΣN

α,n/iωn of the self-

energy (the real part of ΣN just renormalizes the band
dispersions, possibly differently for different pockets [16,
17, 30]). These quantities are averaged over each Fermi
pocket becoming functions only of the Fermi pocket la-
bel α and the fermionic Matsubara frequency ωn =
(2n+ 1)πT . With the aid of the auxiliary “gap func-

tions” ∆̄Γ,n ≡ WΓ,n

ZΓ,n|ωn|
√
NX

and ∆̄(X/Y ),n ≡ W(X/Y ),n

ZX,n|ωn|
√
NΓ

,

the linearized gap equation is expressed as a matrix equa-
tion in Matsubara (indices n,m) and band (indices α, β)
spaces

∑

m,β K
αβ
nm∆̄β,m = 0, with the kernel:
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Here we have introduced the matrix elements com-
ing from the bosonic modes a

(i)
nm = ai(ωn − ωm) (i =

1 corresponds to SDW and i = 2, to Neel fluctua-
tions) and the dimensionless coupling constants λSDW =
2g2SDW

√
NΓNX , λNeel = g2NeelNX . T is the temperature.

We also introduce an upper frequency cutoff Λ = 8γSDW,
corresponding to the energy scale of the bottom/top of
the electron/hole bands, and we assume that µ∗ is a bare
Coulomb interaction renormalized in the standard way
by higher energy processes. τ−1 is the scattering rate
associated with non-magnetic point impurities and the
Zα,n functions are obtained analytically (see Supplemen-
tary Material). The Coulomb pseudo-potential favors so-
lutions with

∑

α Nα∆α = 0.
Reflecting the tetragonal symmetry of the system, the

matrix equation supports two different types of solution:
the s-wave state ∆̄X,n = ∆̄Y,n, with either s++ (∆̄Γ,n ∝
∆̄X,n) or s+− (∆̄Γ,n ∝ −∆̄X,n) structure, and the d-wave
state ∆̄X,n = −∆̄Y,n. The solution in a given symmetry
channel is obtained when the largest eigenvalue η of the
matrix (2) vanishes. Since our calculations never yield
an s++ state, we use the terms s-wave and s+− to refer
to the same state. Due to limitations of the size of the
matrices that can be diagonalized, and since the matrix
size scales as Λ/T , we resolve Tc & 10−3γSDW. Hereafter,
we set λSDW = 0.4 and the Coulomb pseudo-potential
µ∗ = 0.8, which gives, in the absence of competing Neel
fluctuations, T s−wave

c,0 ≈ 30K and implies λNeel = 0.8.
Fig. 2 shows our principal results: the dependence

of the SC transition temperature Tc on the strength of
Neel fluctuations (parametrized by the Neel correlation
length ξNeel). The light solid line (red online) shows the
transition temperature T s−wave

c for the s+− channel in
the absence of impurity scattering. Surprisingly, even
weak, short-range fluctuations strongly suppress s+− SC,
but once T s−wave

c has been substantially reduced, the
additional suppression effect caused by further increas-
ing ξNeel is small. Sufficiently strong Neel correlations
produce a d-wave solution (heavier solid line, blue on-
line) with T d−wave

c that eventually becomes larger than
T s−wave
c but always remains small compared to the max-

imum T s−wave
c . In our linearized theory the transition

between s-wave and d-wave superconductors appears as
a discontinuous change in the nature of the state, but the
considerations of [23] suggest that nonlinear terms not
included here will generate an intermediate s + id state
(shaded area). The dashed lines show the behavior in the
presence of impurity scattering, which is pair-breaking
for both s+− and d-wave superconductivity. Sufficiently
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Figure 3: Averaged s+− gap function
∑

α
Nα∆α across the

different pockets at T s−wave
c,0 as function of Matsubara fre-

quency ωn (in units of γSDW), for µ∗ = 0 (green/dashed curve)
and µ∗ = 0.8 (red/solid curve). The inset shows T s−wave

c,0 (in
units of γSDW) as function of µ∗. Although here we used
ξNeel = 0, a similar behavior holds for ξNeel 6= 0.

strong impurity scattering can disconnect the two SC
states, leaving an intermediate non-SC regime.

We also analyze the impact of the Coulomb pseudo-
potential µ∗ on the s+− state - the d-wave state avoids
the Coulomb repulsion. Fig. 3 shows the pocket-averaged
s+− gap function

∑

α Nα∆α both in the presence and in
the absence of µ∗. To avoid the local repulsion, the av-
eraged order parameter changes sign at a non-zero Mat-
subara frequency, although the sign of each individual
gap does not necessarily change. This is the multi-band
analogue of the response of a single-band s-wave super-
conductor to the local repulsion. For all values of ξNeel

we have studied, neither ∆n=0 nor T s−wave
c (shown in the

inset) are substantially altered by µ∗, in agreement with
the weak-coupling analysis of Ref. [31].

We now turn to the physics of the decrease of T s−wave
c

caused by Neel fluctuations. Increasing ξNeel increases
the spin fluctuation intensity and changes its functional
form (see the inset of Fig. 2). To analyze how differ-
ent frequency regions of the Neel spectral function affect
T s−wave
c , we follow Ref. [25, 26] and calculate the func-

tional derivative

1

Tc

ω δTc

δANeel (ω)
=

[

∆̂
ω δK̂

Tc δANeel (ω)
∆̂

]

/

(

− ∂η

∂Tc

)

η=0

(3)

for different values of ξNeel, as shown in Fig. 4. Previous
work [25, 26] has shown that the low frequency regime
captures the pair-breaking effects of inelastic scattering
while the high frequency regime expresses the changes
to the pairing interaction. The larger magnitude of
δ logTc/δANeel at high frequencies shows that in the pnic-
tides the dominant effect of the Neel fluctuations is to
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c /δANeel (ω) as
function of frequency ω (in units of γSDW) for the cases
ξNeel = 0 (red/solid line), ξNeel = 0.1a (green/dashed line),
and ξNeel = 0.5a (blue/dotted dashed line).

provide a negative contribution to the s+− pairing inter-
action, with the extra pair-breaking effect of the induced
low frequency inelastic scattering being less important.
Because Fig. 4 shows that the logarithmic derivative of
Tc is a slow function of ξNeel we conclude that the ini-
tial steep drop and subsequent flattening of the Tc curve
shown in Fig. 2 is due in large part to the variation of Tc

itself. Additionally, as ξNeel is increased the Neel fluctua-
tion spectrum shifts to lower frequencies (see the inset of
Fig. 2), where the pair-breaking is less effective. However,
additional physics is also at play. In the weak-coupling
limit of two effective competing pairing interactions λs

and λd we obtain Tc ∝ exp
[

−1/
(

√

λ2
s + λ2

d − λd

)]

so

d logTc

dλd
∝ − 1

(

λ2
s + λ2

d − λd

√

λ2
s + λ2

d

) (4)

which is larger in magnitude for larger λd, implying an
opposite ordering of the curves to that seen in Fig. 4.
Our Eliashberg results and Eq. 4 differ because the gap
function self-consistently adjusts to the pairing potential,
so that for larger ξNeel the gap function decreases more
rapidly with frequency, thereby minimizing the depair-
ing effects of the Neel fluctuations (see Supplementary
Material).

Our results offer a possible explanation for the puz-
zling behavior of the hole-doped Ba (Fe1−xMx)2 As2 se-
ries (M = Mn, Cr, Mo) [10], which, in contrast to its
electron-doped counterpart (M = Co, Ni, Rh, Pt, Cu)
[12], does not display SC. The short-range Neel fluctu-
ations induced by the dopants, which were observed ex-
perimentally for low concentrations of M = Mn [8, 9],

suppress the s+− state without giving rise to a high-
temperature d-wave state. This low-Tc s+− state, in
turn, can be easily suppressed, for example by impu-
rity scattering or by another competing ordered state,
such as the SDW state [32, 33] observed at low x. We
suggest that improving the purity of the samples and
applying pressure to suppress the SDW state may re-
veal either a weakened s+− state or perhaps a low Tc

d-wave state. Similarly, in the extremely electron-doped
AyFe2−xSe2 systems [13, 34, 35], where for small y the
hole pocket is generally absent and d-wave superconduc-
tivity is discussed, adding holes by changing A [14] or by
applying pressure [15] should produce the reverse compe-
tition. Interestingly, recent pressure experiments found
two separate SC domes in K0.8Fe1.78Se2 [36], which could
be related to the behavior shown in Fig. 2 (dashed lines).
Indeed, pressure changes the shapes of the Fermi pock-
ets, which affects the relative strength of SDW and Neel
fluctuations.

More generally, since most FeSC compounds have two
matching electron pockets separated by QNeel even at
optimal doping compositions, we expect at least weak
Neel-type fluctuations. Indeed, recent Raman data in-
dicate that a d-wave instability, presumably originated
from these Neel fluctuations, compete with the s+− state
of optimally-doped FeSC [37]. However, our findings
show that these weak (π, π) fluctuations strongly sup-
press T s−wave

c . This suggests that the highest Tc in sev-
eral FeSCs can be potentially enhanced if the (π, π) fluc-
tuations are minimized. One possible route is to make
the sizes and shapes of the two electron pockets unequal,
via, for example, a tetragonal symmetry breaking [38].
Interestingly, torque magnetometry measurements found
such a tetragonal symmetry breaking above Tc in some
optimally doped FeSCs [39]. In Ref. [40], it was also ob-
served that a small strain applied along the orthorhombic
axis can enhance Tc.

In summary, our results open a new route to explore
unconventional superconductivity in multi-band systems
by controlling competing spin fluctuations. In particular,
Neel fluctuations have a strong effect on the s+− state of
the FeSCs, rapidly reducing Tc and potentially driving a
transition from s-wave to d-wave SC (Fig. 2). Depending
on the strength of impurity scattering, more exotic states
can emerge, such as the s + id state [23], although this
might also arise from other mechanisms [24]. Notice also
that the lower Tc solution, even if not present in the
ground state, will give rise to a collective excitation which
can in principle be detected by Raman scattering [37, 41].
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