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We consider the von Neumann and Rényi entropies of the one dimensional quarter-filled Hubbard model.
We observe that for periodic boundary conditions the entropies exhibit an unexpected dependence on system
size: for L = 4 mod 8 the results are in agreement with expectations based on conformal field theory, while
for L = 0 mod 8 additional contributions arise. We explain this observation in terms of a shell-filling effect,
and develop a conformal field theory approach to calculate the extra term in the entropies. Similar shell filling
effects in entanglement entropies are expected to be present in higher dimensions and for other multicomponent
systems.
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Over the course of the last decade, entanglement mea-
sures have developed into a powerful tool for analyzing many-
particle quantum systems, in particular in relation to quantum
criticality and topological order [1]. Within the realm of one
dimensional (1D) systems, arguably the most important result
concerns the universal behaviour in critical theories, which is
characterized by the central charge of the underlying confor-
mal field theory (CFT) [2–4]. Let consider the ground state
|GS〉 of a finite, periodic 1D system of length L and parti-
tion the latter into a finite block A of length ` and its com-
plement Ā. The density matrix of the entire system is then
ρ = |GS〉〈GS|, and we will denote the reduced density matrix
of block A by ρA. Widely used measures of entanglement are
the Rényi entropies

Sn =
1

1− n
ln[TrρnA] . (1)

They encode the full information on the spectrum of ρA [5],
and in the limit n → 1 reduce to the von Neumann entropy
S1 = −TrρA ln ρA. When the subsystem size ` is large com-
pared to the lattice spacing, Sn are given by

Sn =
c

6

(
1 +

1

n

)
ln
(L
π

sin
π`

L

)
+ c′n + o

(
1
)
, (2)

where c is the central charge, c′n are non-universal additive
constants, and o(1) denotes terms that vanish for `→∞. The
result (2) has been confirmed for many spin-chains and itiner-
ant lattice models, see [1] for recent reviews. The knowledge
of the entanglement entropies has led to a deeper understand-
ing of numerical algorithms based on matrix product states [6]
and has aided the development of novel computational meth-
ods [7].

The Hubbard model is a central paradigm of strongly cor-
related electron systems. Its 1D version has attracted much at-
tention for decades, because it is exactly solvable and exhibits
a Mott metal to insulator transition [8]. The Hamiltonian for
periodic boundary conditions is

HHubb = −t
L∑
j=1

∑
σ

c†j,σcj+1,σ+h.c.+U
∑
j

nj,↑ nj,↓, (3)

where c†j,σ are fermionic spin- 1
2 creation operators at site j

with spin σ =↑, ↓, nj,σ = c†j,σcj,σ , and we will assume re-
pulsive interactions U ≥ 0. In the following we will for the
sake of definiteness fix the band filling to be one electron per
two sites, i.e. N↑ = N↓ = L

4 , but we stress that our find-
ings generalize to other fillings and, in fact, to other models.
It is known from the exact solution that the ground state of
(3) below half filling (less than one fermion per site) is metal-
lic and the low energy physics of the model is described by
a spin and charge separated Luttinger liquid [8] equivalent to
the semi-direct product of two c = 1 CFTs [9].

Given this state of affairs, it is quite surprising that the en-
tanglement entropies do not always follow (2). This is shown
in Fig. 1, which shows numerical results for S1 obtained by
density matrix renormalization group (DMRG) for a quarter-
filled Hubbard model at U = t for a number of different
lattice lengths L. Interestingly, both the L = 4 mod 8 and
the L = 0 mod 8 data exhibit scaling collapse, but to differ-
ent functions. As we will show, the entropy for large lattice
lengths L = 4 mod 8 is well-described by the CFT result (2)

FIG. 1: DMRG data for S1 − 2/3 lnL as a function of x = `/L for
U = t and L = 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64. The lower
and upper branches corresponds to lattice lengths L = 4 mod 8 and
L = 0 mod 8 respectively.
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with n = 1, while for L = 0 mod 8 there is an additional
positive contribution −F ′1(`/L), where

F ′1(x) = ln
∣∣2 sin(πx)

∣∣+ ψ

(
1

2 sin(πx)

)
+ sin(πx). (4)

Here ψ(x) is the digamma function. We stress that this be-
haviour is very different from the lattice “parity effects” for
Luttinger liquids [10, 11], which refer to o(1) corrections in
Sn≥2 only.

The shell-filling effect. In order to understand the origin
of the difference in entanglement entropies between L =
4 mod 8 and L = 0 mod 8, we consider the ground state
in the limit U → 0. Here we are dealing with with non-
interacting, spinful fermions, for which the boundary condi-
tions on a ring fix the momenta to be pm = 2πm/L with inte-
germ ∈ [−L/2, L/2). For a chain of lengthL = 8n+4, quar-
ter filling corresponds to an odd number Nσ = L/4 = 2n+ 1
of spin-σ fermion, and the unique ground state is the symmet-
ric Fermi sea

|2n+ 1〉FS =

n∏
m=−n

c†↑(pm)c†↓(pm)|0〉 , (5)

where c†σ(k) = L−1/2
∑L
j=1 e

−ikjc†j,σ are creation operators
in momentum space and |0〉 is the fermionic vacuum state.
On the other hand, when L = 8n, Nσ = L/4 = 2n is even
and it is impossible for a given spin species to form a sym-
metric Fermi sea. As a result the ground state is degener-
ate. In particular, there are two degenerate ground states with
Nσ = L/4 = 2n, that have zero momentum and are parity
eigenstates (parity is a good quantum number)

|σ〉 =
c†↑(kF)c†↓(−kF) + σc†↓(kF)c†↑(−kF)

√
2

|2n− 1〉FS. (6)

Here kF = π/4 is the Fermi momentum. As is shown below,
the U → 0 limit of the Hubbard model ground state gives
the state |+〉. The shell-filling effect is now clear: for L =
4 mod 8 the ground state is a symmetrically filled Fermi sea,
while for L = 0 mod 8 it is given by the linear superposition
of two asymmetric Fermi seas. In terms of spin symmetries
this state corresponds to the Sz = 0 component of a S = 1
multiplet. We note that the entropy for the superpositions |σ〉
are higher. Intuitively this derives from the fact that the states
|σ〉 are less constrained, as the momentum difference between
up spin and down spin fermions can take two values.

Bethe Ansatz (BA) solution. We now turn to the caseU > 0.
Eigenstates of the Hubbard chain are parametrized in terms
of the solutions {Λα, kj} of the following set of coupled BA
equations [8, 16]

kjL = 2πIj −
N↓∑
α=1

θ
( sin kj − Λα

u

)
, j = 1, . . . , N ,

N∑
j=1

θ
(Λα − sin kj

u

)
= 2πJα +

N↓∑
β=1

θ
(Λα − Λβ

2u

)
,

α = 1, . . . , N↓. (7)

Here u = U/(4t), θ(x) = 2 arctan(x) and N = N↑ + N↓.
For real solutions of the BA equations (7), the “quantum num-
bers” Ij (Jα) are integers if N↓ is even (if N↑ is odd) and
half-odd integers if N↓ is odd (if N↑ is even). The mo-
mentum is expressed in terms of the parameters {Λα, kj} by
P =

∑N
j=1 kj , while the energy (in units of t) is given by

E = uL−
N∑
j=1

[2 cos(kj) + µ+ 2u] , (8)

where µ is the chemical potential. Following Ref. [17], we
define regular BA states as eigenstates of Eq. (3) arising from
solutions of (7) with 2N↓ ≤ N , where all kj and Λα are finite.
We denote these states by |{Ij}; {Jα}〉reg. As was shown in
Ref. [17], all regular BA states are lowest-weight states with
respect to the SO(4) symmetry of the Hubbard model [18],
and a complete set of energy eigenstates is obtained by acting
on them with the SO(4) raising operators. For L = 4 mod 8 it
is known [8, 16] that the quarter filled ground state is a regular
BA state characterized by the choice Ij = −2n− 3

2 + j , j =
1, . . . , 4n+ 2 and Jα = −n− 1 + α , α = 1, . . . , 2n+ 1.

For L = 8n (n a positive integer), we find that there are
two degenerate lowest energy regular, real solutions of (7)
with N↑ = N↓ = 2n fermions. They are obtained by the
two choices J (1,2)

α = −n − 1
2 + α , α = 1, . . . , 2n and

I
(1)
j = −2n+ j , j = 1, . . . , 4n or I(2)

j = −2n− 1 + j , j =
1, . . . , 4n. We stress that the distribution of the Ij is asym-
metric around zero in both cases. Interestingly, these are not
ground states. The regular solution with the lowest energy
involves one pair of complex conjugate Λα’s known as a 2-
string, but it is not the ground state either.

Let us now consider regular BA states with total spin quan-
tum number Sz = 1, i.e. N↑ = 2n + 1, N↓ = 2n − 1.
These are by construction lowest weight states of the spin-
SU(2) symmetry algebra. The lowest energy regular BA state
in this sector corresponds to the (symmetric) choice I(0)

j =

−2n − 1
2 + j , j = 1, . . . , 4n, and J (0)

α = −n + α , α =
1, . . . , 2n− 1. Crucially, the state

S−|{I(0)
j }; {J

(0)
α }〉reg, (9)

is a (non-regular) eigenstate of the Hubbard Hamiltonian with
N↑ = N↓ = L/8 fermions. Here S− =

∑L
j=1 c

†
j,↓cj,↑ is

the spin lowering operator. As [S−, H] = 0 its energy is
the same as that of the regular BA state |{I(0)

j }; {J
(0)
α }〉reg.

The energy difference between (9) and the regular solutions
discussed above can be calculated for large L using standard
methods [9] and is found to be negative. Considering other
non-regular Bethe Ansatz states in an analogous way, we find
that (9) is in fact the ground state.

Bosonization. The low-energy physics of the Hubbard
model is described by a spin-charge separated two-component
Luttinger liquid Hamiltonian [12]

H =
∑
a=c,s

va
2

∫
dx
[
(∂xΦa)

2 + (∂xΘa)
2
]
, (10)
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where vc,s are the velocities of the collective charge and spin
degrees of freedom. For L = 0 mod 8 the mode expansions
of the canonical Bose fields Φa = ϕa + ϕ̄a, and their dual
fields Θa = ϕa − ϕ̄a follow from

ϕ̄a(x, t) = P̄a +
x+

La0
Q̄a +

∞∑
n=1

e−i
2πn
La0

x+ āa,n + h.c.√
4πn

,

ϕa(x, t) = Pa +
x−
La0

Qa +

∞∑
n=1

ei
2πn
La0

x−aa,n + h.c.√
4πn

, (11)

where x± = x±vt and a0 is the lattice spacing. The structure
of the ground state for L = 0 mod 8 is encoded in the zero
modes, which have commutations relations [Pa, Qa] = − i

2 =
−[P̄a, Q̄a]. The eigenvalues of Qa are

qc =

√
π

8Kc

∑
σ=↑,↓

(Kc + 1)mσ + (1−Kc)m̄σ ,

qs =

√
π

2

(
m↑ −m↓) , (12)

where Kc is the Luttinger parameter in the charge sector, mσ

are half odd-integer numbers, and the eigenvalues of Q̄a are
obtained by interchanging mσ ↔ m̄σ . The Hamiltonian then
has the mode expansion

H =
∑
a=c,s

va
La0

[
Q2

a + Q̄2
a +

∞∑
n=1

2πn(a†a,naa,n + ā†a,nāa,n)
]
.

(13)
There are two degenerate ground states

|±〉 =
1√
2

[∣∣∣1
2
, 0; 0,

1

2

〉
±
∣∣∣0, 1

2
;

1

2
, 0
〉]

, (14)

where we have introduced a notation |m↑,m↓; m̄↑, m̄↓〉 for
states that are annihilated by all aa,n, āa,n and have eigen-
values qa(mσ, m̄σ) and q̄a(mσ, m̄σ) of the zero mode oper-
ators Qa and Q̄a respectively. In the Hubbard model the de-
generacy between |+〉 and |−〉 is removed by the presence
of a marginally irrelevant interaction of spin currents and the
ground state in fact corresponds to |+〉. In principle one
could now generalize the CFT calculation of entanglement
entropies of Ref. [3] to the case at hand. Rather than do-
ing so, we pursue the following shortcut. Let us carry out
the conformal map from the cylinder to the plane [13], i.e.
z = exp

(
2π
La0

(vt − ix)
)
, z̄ = exp( 2π

La0
(vt + ix)). Then ex-

pectation values in the state |+〉 of operators in the bosonic
theory (13) with zero-mode quantization conditions (12) are
formally the same as the expectation values of the correspond-
ing operators in the “usual” compactified boson theory in the
state

lim
z,z̄→0

cos
(√

2πΦs(z, z̄)
)
|0〉 . (15)

Here by usual we mean the boson theory (13) with zero-mode
quantization conditions (12), where nowmσ , m̄σ are integers,

and |0〉 is the vacuum state |0, 0, 0, 0〉 of this theory. While
the state (15) is not an excited state, because cos

(√
2πΦs

)
is not a local operator of the compactified boson theory, it
has the same structure. This allows us to utilize results for
entanglement entropies in low-lying excited states in CFTs.

CFT approach to the Rényi entropies. A general approach
to the latter problem has been recently developed by Alcaraz
et al. [14, 15] and their main result can be summarized as
follows. The n’th Rényi entropy for an excited state of the
form O(0, 0)|0〉 is given by

Sn =
c

6

(
1 +

1

n

)
ln

[
L

π
sin

(
π`

L

)]
+ c′n

+
1

1− n
ln [Fn(`/L)] + o(L), (16)

where c′n are O-independent constants, and the scaling func-
tions FOn (x) are given by

Fn(x) =
〈
∏n−1
k=0 O

(
π
n (x+ 2k)

)
O†
(
π
n (−x+ 2k)

)
〉

n2n(h+h̄)〈O
(
πx
)
O†
(
− πx

)
〉n

. (17)

Here h and h̄ are the conformal dimensions of the operator
O. In our case O(x) = 2 cos(

√
2πΦs(x)) and we need to

evaluate (σ =
∑n
l=1 σl)

〈
2n∏
j=1

O(xj)〉 =
∑

σ1,...,σn=±
δσ,0

∏
i<j

∣∣∣2 sin
(xi − xj

2

)∣∣∣−σiσj ,
(18)

where the xj’s are given by (17). We find that F sn(x) can be
expressed as the square root of a determinant, which, surpris-
ingly, is identical to Eq. (56) of Ref. [15]. We have succeeded
in expressing this determinant in a form amenable for analytic
continuation in n

[Fn(x)]
2

=

n∏
p=1

[
1− (n− 2p+ 1)2

n2
sin2(πx)

]

=

[[2 sin(πx)

n

]nΓ
(

1+n+n csc(πx)
2

)
Γ
(

1−n+n csc(πx)
2

)]2

. (19)

Using that for the Hubbard model c = 2 we then obtain a CFT
prediction for the shell filling effect by combining equations
(19) and (16). In order to obtain an expression for the von
Neumann entropy we need to take the limit n → 1, which
gives

S1 =
c

3
ln
(L
π

sin
π`

L

)
+ c′1 − F ′1(`/L) + o(L) , (20)

where F ′1(x) is given by (4). We note that both (19) and (20)
apply also to certain excited states in spin chains [15]. For
small x, we have (F1(x))′ = π2x2/3 + O(x4) in agreement
with the general result in [14].

Comparison with numerical results. We performed exten-
sive DMRG [19] computations of the periodic quarter-filled
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Hubbard model by keeping M = 3000 states in order to
achieve satisfactory convergence for periodic systems up to
length L = 64. For small values of U . t we find good
agreement for both S1 and S2 with the predictions (20) and
(16). A representative example is shown in Fig. 2. As ex-

FIG. 2: δS1 ≡ S1 − 2
3
ln

[
L
π
sin

(
π`
L

)]
− c′1 as a function of x =

`/L for U = 0.3t and L = 24, 32, 40, 48, 56, 64. The constant
c′1 = 1.205 has been adjusted by hand. The solid curve is −F ′

1(x).

pected the agreement with the CFT prediction is best for large
block lengths ` ∼ L/2 and becomes poor for small `, when
lattice effects become important. In this region S2 further-
more exhibits strong oscillatory behaviour as expected [10].
For larger values of U & t the agreement with the CFT pre-
dictions for both S1 and S2 becomes increasingly poor. We
now turn to the origin of these discrepancies.

Effects of the marginal perturbation. It is well know that
in the Hubbard model the low-energy Luttinger liquid Hamil-
tonian (10) is perturbed by a marginally irrelevant operator
in the spin sector [12]. This leads to logarithmic corrections
[20], which can be quite important for small system sizes. The
effects of a marginal perturbation on the ground state entan-
glement in CFTs was studied in [21]. These corrections are
small for the isotropic Heisenberg chain [22] as well as the
Hubbard model for L = 4 mod 8. However, the effects of the
marginal perturbation on the shell-filling effect are quite large
already for moderate values of U & 2t. In order to quantify
them, we have considered an extended Hubbard model

Hext = HHubb + V2

∑
j,σ,σ′

nj,σnj+2,σ′ . (21)

At weak coupling the main effect of V2 is to reduce the bare
coupling constant of the marginal perturbation (see [23] for
a similar application of this idea). We note that a nearest-
neighbour density-density interaction would be ineffective at
quarter filling and weak coupling [24]. We find that increas-
ing V2 from zero leads to a significant improvement in the
agreement between the CFT prediction (20), (16) for the shell-
filling effect for the available system sizes L ≤ 64.

Conclusions. We have described a novel shell-filling ef-
fect in entanglement entropies of the 1D quarter-filled Hub-

bard model with periodic boundary conditions. We have ver-
ified that the effect occurs, as expected, also at other fill-
ings and in extended Hubbard models. We have developed
a CFT approach to calculate the additional contribution to the
Rényi entropies, and found good agreement with numerical
computations. The effect, while somewhat unexpected, has
a simple origin: for certain ratios of lattice lengths to par-
ticle numbers in multi-component systems, the ground state
cannot be thought of in terms of a product of Fermi seas (in
general these will consist of appropriate elementary excita-
tions), but is in fact a linear combination of different such
seas. This suggests similarities with the results obtained
[25, 26] for the entanglement of linear combinations of de-
generate ground states. However, in our case the ground state
is unique for U > 0 (and fixed Sz = 0) and is thus not based
on a degeneracy. We expect shell-filling effects to exist for
multi-component continuum or lattice models of interacting
fermions or Fermi-Bose mixtures, as well as in higher dimen-
sional critical systems. Examples of the former include multi-
component gases with delta-function interactions [27], (ex-
tended) repulsive SU(N) Hubbard or tJ models [28]. Finally,
we believe that shell-filling effects can play a role in numer-
ical studies of two-dimensional gapless spin liquids, which
display a spinon Fermi surface [29–31].
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Theory, Springer (NY), 1997.

[14] F. C. Alcaraz, M. Ibanez Berganza, and G. Sierra, Phys. Rev.
Lett. 106, 201601(2011).

[15] F. C. Alcaraz, M. Ibanez Berganza, and G. Sierra, J. Stat. Mech.
(2012) P01016.

[16] E. H. Lieb and F. Y. Wu, Phys. Rev. Lett. 20, 1445 (1968).
[17] F. H. L. Essler, V. E. Korepin and K. Schoutens, Phys. Rev. Lett.

67, 3848 (1991); Nucl. Phys. B 372, 559 (1992); Nucl. Phys. B
384, 431 (1992).

[18] O. J. Heilmann and E. H. Lieb, Ann. N.Y. Acad. Sci. 172, 584
(1971); C. N. Yang, Phys. Rev. Lett. 63, 2144 (1989).

[19] S. R. White, Phys. Rev. Lett. 69, 2863 (1992); U. Schollwöck,
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