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We discuss the potential of multilayered plasmonic particles to tailor the optical scattering response. 

The interplay of plasmons localized in thin stacked shells realizes peculiar degenerate cloaking and 

resonant states occurring at arbitrarily close frequencies. These concepts are applied to realize 

ultrasharp comb-like scattering responses and synthesize staggered, ideally strong super-scattering 

states closely coupled to invisible states. We demonstrate robustness to material losses and to 

variations in the background medium, properties that make these structures ideal for optical tagging. 

PACS numbers: 41.20.Jb, 71.45.Gm, 78.67.Pt 

 

Increased interest in sensing, optical imaging/tagging and energy harvesting at the nanoscale has 

recently fostered significant research efforts on enhanced scattering and absorption properties from 

nanoparticles and, more in general, on the capability of engineering their scattering and absorption 

spectra at will. Plasmonic nanostructures [1] are particularly well suited for this purpose, because of 

their unprecedented control and large enhancement of light-matter interaction and the associated strong 

and localized resonant effects, enabling new and anomalous optical phenomena [2]. In addition to 

resonant scattering, a notable example of anomalous response from small particles may be obtained 

with plasmonic cloaks [3]. These covers can dramatically reduce the total scattering cross section 



(SCS) of moderately sized objects through a scattering cancellation mechanism based on their local 

negative polarizability. The concept has been also extended to multi-frequency operation by 

considering multiple plasmonic layers [4]-[5], which provide further degrees of freedom. In this 

configuration, complex scattering signatures may be achieved because of the complex interaction 

among multiple plasmon modes. In this context, it was proven [5] that, for any passive scatterer, a 

resonant scattering peak always exists between two zeros of any scattering order. This fact is an 

unavoidable constraint of causality and passivity, and it may be considered the scattering equivalent of 

Foster's reactance theorem in circuit theory [6]. In other words, a zero (cloaked state) in the scattering 

response is generally followed by a pole (resonant state) before a new zero occurs along the frequency 

axis. 

In the context of cloaking, this inherent property intrinsically limits the overall achievable 

bandwidth. However, in a more general scenario this same property may be exploited to our advantage, 

providing unexplored flexibility to engineer the scattering signature of a composite object. The location 

of alternating zeros and poles in the scattering spectrum obviously depends on the geometry and 

material properties of the scattering object, and it can be tailored to a very large degree. We have used 

this idea to realize a degenerate state between cloaking and resonant scattering [7], resulting in an 

asymmetric signature analogous to a Fano resonance [8]-[10]. In this Letter we apply this concept to 

further enrich the scattering spectrum of small nanoparticles, producing a complex frequency 

dispersion that leads to new functionalities. We show that a single, isotropic and center-symmetric 

scatterer with subwavelength size can in principle realize multiple Fano-like resonances staggered 

arbitrarily close along the frequency axis, obtaining a peculiar Fano-comb frequency response with 

combined ideal superscattering and cloaking features. This ability may open exciting possibilities for 

several applications, ranging from sensing to spectroscopy [11]-[13] and optical tagging. 



Scattering from a concentric multilayered spherical system can be analyzed with Mie theory 

[14]-[15]. Using the notation of Ref. [3] and assuming an i te ω−  time convention, the TM scattering 

coefficient of order n may be written as ( )TM TM TM TM
n n n nc U U iV= − +  where the quantities TM

nU , TM
nV  

are obtained by solving appropriate ( ) ( )2 1 2 1N N+ × +  determinants [15], where N is the number of 

concentric layers surrounding a dielectric core (for further details see [16]). TE coefficients can be 

easily computed using duality. In the long-wavelength regime, where dipolar scattering dominates (

1n = ), the complex wave interaction with multilayered plasmonic scatterers can be understood by 

analyzing the quasi-static dispersion conditions for cloaking, 1 0TMU = , and resonant scattering, 

1 0TMV = . In order to quantitatively understand the potential offered by a multilayered plasmonic 

scatterer, consider a composite nanoparticle with geometry depicted in the inset of Fig. 1(a). A 

dielectric core with radius 150 nma =  and permittivity 010ε ε=  is surrounded by 4N =  plasmonic 

layers with same thickness and a linearly modulated plasma frequency, i.e., the plasma frequency of 

two consecutive layers differs by a fixed quantity pωΔ , corresponding to a difference in permittivity 

cεΔ  at a given frequency. This may be realized, for instance, by gradually varying the doping level in a 

semiconductor, as discussed below. Under these assumptions, the geometry of the structure is 

determined once the aspect ratio 1 1c ca aη = , the permittivity 1cε  of the first plasmonic shell and cεΔ  

are chosen. The contours in Fig. 1(a) show the dynamic total SCS of the composite nanoparticle as a 

function of its aspect ratio and permittivity of the first layer, assuming 0.15cεΔ = − . Red and blue 

curves highlight the quasi-static dispersion of resonance and cloaking conditions for dipolar scattering. 

It can be generally shown that, for any fixed value of 1cη , the quasi-static dispersion equations 

1 0TMU =  and 1 0TMV =  each admit 1N +  solutions for 1cε , equal to the number of spherical interfaces in 

the composite particle. This is related to the fact that each surface plasmon localized at an interface is 



responsible for a cloaking-resonance, scattering dip-peak, pair. In our scenario, 1 5N + =  cloaking and 

resonant branches are available, of which only four are visible in Fig. 1(b), since the last pair occurs for 

larger negative values of 1cε . As discussed in the following, when the layers have similar plasma 

frequencies as in Fig. 1, the required alternation between cloaking and resonant states implies that 

several branches concentrate in the region 1 0cε ≈  . In this case, cloaking and resonant conditions merge 

for very thin ( 1 1cη ∼ ) and thick ( 1 0cη ∼ ) shells, and the dual phenomena of cloaking and resonant 

scattering strongly interfere within the same particle. 

 To give an example of a practical implementation of the proposed concept, we assume that the 

plasmonic layers are made of aluminum-doped zinc oxide (AZO) semiconductors [16]-[18], whose 

frequency dispersion is modeled with a lossless Drude model ( )2 2
1 0c pε ε ε ω ω∞= −  with 3.3ε∞ = . The 

plasma frequency may be tailored by the doping level and we assume it as 2213.2 THzpω =  [18] for 

the first layer, with 0.015p pω ωΔ =  for the other shells. In order to intercept the region where branches 

merge in Fig. 1, we choose a high aspect ratio 1 0.95cη = , corresponding to the horizontal dashed arrow 

in Fig. 1(a). Kramers-Kronig relations require that permittivity decreases with wavelength in low-loss 

regions [19], as indicated by the arrow, confirming that, as we change the wavelength of operation, 

zeros and poles necessarily alternate. In the geometry considered here, the sequence of intercepted 

zeros and poles translates into a peculiar comb-like scattering signature, shown in Fig. 1(b) (red line). 

Each numeral number in the two panels corresponds to a specific cloaking or resonant state. Three 

closely spaced ultranarrow resonant peaks and dips appear around the wavelength of 1500 nm, with 

huge excursions (more than 30 dB) over a narrow bandwidth. These features are produced by a stack of 

Fano resonances in which cloaking states act as sub-radiant dark modes of the system. In the points 

where the dispersion curves in Fig. 1(a) get close, the interaction of a dark cloaking state with a bright 



resonant mode produces a dipole-dipole Fano-like feature [7],[20]-[21], which is much sharper than 

conventional dipolar plasmonic resonances [peak I in Fig. 1(b)] and provides several advantages 

compared to the conventional Fano response [7].  

Although the scattering is dominated by the dipolar response, the scattering peaks in Fig. 1(b) 

are more pronounced than conventional dipolar resonances, because of the contribution of a second-

order (quadrupolar) plasmonic resonance aligned with the dipolar peaks [this is particularly evident in 

point I of Fig. 1(b), red line, but it holds true for all resonance peaks]. We prove in the following that 

this is an important by-product of the proposed configuration, which automatically supports staggered 

super-scattering resonances [22]. Next, we introduce realistic losses in the Drude model of each layer, 

with a collision frequency 32 10 pγ ω−= ⋅  [18] [black line in Fig. 1(b)]. Absorption affects the total 

scattering excursion in the comb, as expected, but it preserves the comb-like signature. While the 

quadrupolar contribution is strongly attenuated by losses, the dipolar comb response is robustly 

preserved and the inverse bandwidth of the staggered Fano-like resonances corresponds to an effective 

quality factor over ten times larger than an isolated dipolar resonance. 

The remarkably different response of the composite nanoparticle at the peaks and dips of the 

comb is not only evident in its total SCS, but also in the near-field distribution. In Figs. 2(a) and 2(b), 

we show the electric field in the E plane (time snapshots of the component parallel to the impinging 

field) for the particle of Fig. 1 at the cloaking dip IV and the resonant peak V, respectively. The near-

field undergoes dramatic modifications in this very narrow frequency range. At the resonant peak 

1511 nmλ = , enhanced resonant fields are confined at the interface between two specific plasmonic 

layers, and the impinging wave is strongly perturbed around the resonant nanoparticle [Fig. 2(b)]. The 

inset shows a detail of the field amplitude distribution, demonstrating strong field localization in one of 

the shells. We have verified that each peak in the comb corresponds to the "activation" of a specific 



interface of the plasmonic cloak. The power flow around the nanoparticle (time-average Poynting 

vector) is represented as white streamlines and follows complex paths characterized by optical vortices 

and saddle points [23]-[24]. The nearest cloaking dip occurs at a wavelength just 5 nm longer, and the 

field distribution is dramatically modified [Fig. 2(a)], as the scattering is almost totally canceled. The 

extreme proximity in frequency of these very different scattering states ensures a sharp and deep 

variation between the “on” and “off” states of the frequency comb, which is ideal for applications that 

require high selectivity between adjacent channels. 

For these applications, it is of paramount importance to understand the sensitivity/robustness of 

this phenomenon to different design parameters. In particular, if tagging applications are envisioned 

(e.g., multicolor labeling in optical imaging of biological tissues [25]), the sharp resonances should be 

robust to variations in the background permittivity bε . This is possible to assess by analyzing the quasi-

static dispersion relations for cloaking 0TM
nU =  and resonant scattering 0TM

nV = [16]. For N  

plasmonic layers, the general solutions do not have a simple analytical form and the best way to 

visualize them is a graphical representation as in Fig. 1(a). Nevertheless, if we are interested in specific 

regions of the parameter space, simple analytical formulas may be derived. Letting the aspect ratio 1cη  

approach unity (the limit of thin plasmonic shells, as in our example), the dispersion equation for 

arbitrary n − th TM resonance ( 0TM
nV = ) may be written in the simple form: 

 ( )1
0

1 0
N

b c c
m

n m
n

ε ε ε ε
=

+⎛ ⎞+ + Δ =⎜ ⎟
⎝ ⎠

∏  (1) 

and for cloaking ( 0TM
nU = ): 

 ( ) ( )1
0

0.
N

b c c
m

mε ε ε ε
=

− + Δ =∏  (2)

Each dispersion equation evidently admits 1N +  quasi-static solutions, of which one is independent of 



the shell properties [first factor in Eqs. (1-2)] and corresponds to resonance and cloaking conditions of 

a homogeneous particle without cover. Conversely, the other terms in (1-2) only depend on the 

plasmonic shells. Since these are common factors in the two equations, in this limit of ultrathin shells 

they correspond to N  degenerate cloaking / resonant states, which can be seen in the diagram of Fig. 

1(a) at 1 1cη ∼ . Each of these solutions corresponds to an ultranarrow Fano resonance occurring exactly 

at the plasma frequency (zero permittivity) of the particular layer that gets activated, as shown in the 

inset of Fig. 2(b). These degenerate states are completely independent of the core permittivity and the 

background medium. In addition, this result is surprisingly independent of n , implying that, in the 

limit of thin layers, each resonant peak in the comb supports the superposition of all scattering orders 

at resonance at the same frequency, and each scattering dip represents a true cloaked state, in which all 

scattering orders are suppressed at the same frequency! In other words, the upper and lower limits on 

scattering excursion in the comb are in principle unlimited in the ideal lossless scenario, as all 

scattering orders resonate and get suppressed under the same condition. When losses are considered, 

larger- n  harmonics get more affected, but staggered superscattering and invisible states may be still 

realistically achieved. 

 If we consider the opposite extreme 1cη  approaching zero (small core, compared to the 

plasmonic layers), the dispersion relation for resonant scattering may be written as: 

 ( )1 1
1 , , 0c n c c b

n f
n

ε ε ε ε ε+⎛ ⎞+ Δ =⎜ ⎟
⎝ ⎠

 (3) 

and for cloaking: 

 ( )1 1
1 , , 0,c n c c b

n g
n

ε ε ε ε ε+⎛ ⎞+ Δ =⎜ ⎟
⎝ ⎠

 (4) 



where nf  and ng  are two analytic functions. The dispersion equations have a common degenerate 

solution at 1 1c
n

n
ε ε= −

+
, corresponding to a Fano resonance that depends only on the core and the first 

plasmonic layer, sustained by the plasmon mode localized at the inner interface. Its sensitivity to the 

core permittivity combined with nonlinear effects has been exploited in [7] to realize giant all-optical 

scattering switches. In our scenario the situation is much richer: equations ( )1, , 0n c c bf ε ε εΔ =  and 

( )1, , 0n c c bg ε ε εΔ =  admit N  additional solutions for 1cε , which are in general nondegenerate cloaking 

and scattering conditions. Although these solutions do not have a simple general form, after expanding 

them in Taylor series for small values of cεΔ  we gain additional insights into the comb signature. In 

this case, we find again that a solution of each equation lies far away, as in Fig. 1(a), and is not of 

interest for our purposes. The remaining 1N −  solutions, however, may be written in the form 

1c n cxε εΔ� , where nx  is a proportionality factor that coincides for cloaking and resonant scattering. In 

the limit of small cεΔ  they form quasi-degenerate states corresponding to the three “internal” branches 

of Fig. 1(a). The continuity of these branches and their necessary alternation ensures that a comb 

feature arises for any aspect ratio in the limit 0cεΔ → , essentially independent of the background 

medium. In Figs. 3(a) and 3(b), we numerically demonstrate the inherent robustness of this 

phenomenon by varying the background and core permittivity, respectively. Consistent with the 

previous analysis, the comb is completely insensitive to large variations in the background material, 

whereas the “external” scattering features strongly depend on it. Interestingly, the overall response is 

also unaffected by the core permittivity.  

This peculiar robustness of the scattering signature is further discussed in [16], and it appears perfectly 

suited for optical tagging. In fact, the spectrum locally assumes a “digitized” regular shape that can be 

used to robustly encode bits of information in the structure by tuning the plasma frequency of each 



layer. This concept is sketched in Fig. 4(a): if a light beam is shone on a nanotag composed of our 

multilayered nanoparticle, the scattered spectrum will be similar to the one in Fig. 1(b). Scattered light 

can be collected by a photodetector and processed. Now, imagine identifying a fixed narrow “window” 

of 3L =  frequency channels/bits in our photodetector, as indicated in panels (b), (c) and (d) of Fig. 4. 

The tag identity will be determined by overlapping the comb-like scattering spectrum with the L  

channels. By tuning the plasma frequencies of the plasmonic layers, it is possible to record the desired 

code by aligning poles or zeros in the tag windows, hence encoding the identity of up to 2L  different 

tags. This scheme provides a concept example on how the rich scattering spectrum of multilayered 

plasmonic particles may be used for optical tagging, similar to radio-frequency identification (RFID) 

tags. The information is effectively encoded in deeply subwavelength nanoobjects and it is possible to 

read it by means of a scattering measurement. In a practical scenario, we would encode the nanotag at 

the time of fabrication, and the specific comb signature will hold without being affected by the 

surrounding environment, allowing efficient encoding and easy detection, particularly interesting to 

realize nano-biomarkers.  

In this Letter, we have shown that a peculiar Fano-comb scattering spectrum can be realized with 

isotropic multilayered plasmonic nanoparticles. A practical design at infrared frequencies has been 

proposed based on thin AZO plasmonic layers, whose plasma frequency may be controlled with the 

doping level. We envision fabrication of these multi-layered shells with a variety of nanofabrication 

techniques, including nanoskiving [26] a multilayered semiconductor material with a gradient of 

doping level. The proposed nanoparticles may also be arranged in planar arrays, whose reflection and 

transmission coefficients would show a similar comb-like signature, realizing thin metasurfaces for 

optical filtering, sensing and tagging. As an example, we show in [16] the response of a periodic array 

of Fano-comb particles for different periods of the square lattice. The dipolar nature of these scattering 

features provides many advantages, including reasonable robustness to realistic material losses. In 



addition, the comb response automatically realizes staggered super-scattering resonances, which are 

difficultly realized in conventional plasmonic nanoparticles [22].  

The scattering behavior described in this Letter is completely scalable in frequency, provided that 

plasmonic materials with a controllable plasma frequency are available or realizable in the considered 

frequency range. Due to the great design flexibility and the possibility to tailor exotic scattering 

features, we believe that the realization of Fano-comb particles may provide crucial benefits for several 

applications, such as improving the resolution in comb-spectroscopy techniques and producing efficient 

optical tagging biomedical devices. Including nonlinearities in the shells or core material may further 

extend the impact of this concept, providing dynamic tunability and switching effects. 
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YIP award No. FA9550-11-1-0009. 
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Figures 

 

Figure 1 – (a) Total SCS as a function of 1cη  and 1cε   for the multilayered particle shown in the inset, 

assuming 010ε ε= , 150 nma =  and 0.15cεΔ = − . The black dashed arrow indicates a wavelength 

increase for fixed particle geometry, corresponding to panel (b). (b) Scattering spectrum against 

wavelength for 1 0.95cη = , for lossless (red solid) and lossy layers (black solid) and a homogeneous 

dielectric particle of same size (blue dashed). Roman numbers identify the different resonant peaks and 

cloaking dips intercepted when changing the wavelength in (a), reflected in the scattering spectrum in 

(b). 



 

Figure 2 – Electric field distribution in the E plane (snapshot in time), for the multilayered particle of 

Fig. 1 at the cloaking dip IV (a) and the resonant peak V (b). The power flow (time-average Poynting 

vector) is shown with white stream lines. The inset in (b) shows the electric field amplitude in the 

quadrant indicated by the black dashed square. 

 

 

 

 

 



 

Figure 3 – Sensitivity of the scattering spectrum to the background medium (a) and the core 

permittivity (b) for a multilayered nanoparticle as in Fig. 1. 

 



  

Figure 4 – (a) Schematic representation of optical tag reading. (b),(c),(d) Three examples of optical 

nanotags: by changing the plasma frequency of the plasmonic layers, it is possible to encode different 

sequences of bits. The reading window (black boxes) is fixed and by overlapping it with the comb-like 

scattering response we determine the tag identity. 


