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We study photon-photon correlations and entanglement generation in a one-dimensional waveg-
uide coupled to two qubits with an arbitrary spatial separation. To treat the combination of nonlin-
ear elements and 1D continuum, we develop a novel Green function method. The vacuum-mediated
qubit-qubit interactions cause quantum beats to appear in the second-order correlation function.
We go beyond the Markovian regime and observe that such quantum beats persist much longer than
the qubit life time. A high degree of long-distance entanglement can be generated, increasing the
potential of waveguide-QED systems for scalable quantum networking.
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One-dimensional (1D) waveguide-QED systems are
emerging as promising candidates for quantum informa-
tion processing [1–14], motivated by tremendous exper-
imental progress in a wide variety of systems [15–24].
Over the past few years, a single emitter strongly cou-
pled to a 1D waveguide has been studied extensively [2–
8, 10, 12–14]. To enable greater quantum networking po-
tential using waveguide-QED [1], it is important to study
systems having more than just one qubit.

In this paper, we study cooperative effects of two

qubits strongly coupled to a 1D waveguide, finding the
photon-photon correlations and qubit entanglement be-
yond the well-studied Markovian regime [25–28]. A key
feature is the combination of these two highly nonlinear
quantum elements with the 1D continuum of states. In
comparison to either linear elements coupled to a waveg-
uide [29–32] or two qubits coupled to a single mode serv-
ing as a bus [33], both of which have been studied pre-
viously, new physical effects appear. To study these ef-
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FIG. 1. Schematic diagram of the waveguide system and
single-photon transmission. (a) Two qubits (separated by L)
interacting with the waveguide continuum. Panels (b) and (c)
show colormaps of the single-photon transmission probability
T and the phase shift θ, respectively, as a function of detun-
ing δ = ck − ω0 and 2kL. Here, we consider the lossless case
Γ′ = 0.

fects, we develop a numerical Green function method to
compute the photon correlation function for an arbitrary
interqubit separation.

The strong quantum interference in 1D, in contrast
to the three-dimensional case [34], makes the vacuum-
mediated qubit-qubit interaction [35] long-ranged. We
find that quantum beats emerge in the photon-photon
correlations, and persist to much longer time scales in
the non-Markovian regime. We show that such persistent
quantum beats arise from quantum interference between
emission from two subradiant states. Furthermore, we
demonstrate that a high-degree of long-distance entan-
glement can be generated, thus supporting waveguide-
QED-based open quantum networks.

Hamiltonian.—As shown in Fig. 1(a), we consider two
qubits with transition frequencies ω1 and ω2, separation
L = ℓ2−ℓ1, and dipole couplings to a 1D waveguide. The
Hamiltonian of the system is [36]

H =
∑

j=1,2

~(ωj − iΓ′
j/2)σ

+

j σ
−
j +Hwg

+
∑

j=1,2

∑

α=R,L

∫

dx~Vjδ(x− ℓj)[a
†
α(x)σ

−
j + h.c.],

Hwg =

∫

dx
~c

i

[

a†R(x)
d

dx
aR(x)− a†L(x)

d

dx
aL(x)

]

, (1)

where a†R,L(x) is the creation operator for a right- or left-
going photon at position x and c is the group velocity of
photons. σ+

j and σ−
j are the qubit raising and lowering

operators, respectively. An imaginary term in the en-
ergy level is included to model the spontaneous emission
of the excited states at rate Γ′

1,2 to modes other than the
waveguide continuum [37]. The decay rate to the waveg-
uide continuum is given by Γj = 2V 2

j /c. Throughout the
paper, we assume two identical qubits: Γ1 = Γ2 ≡ Γ,
ω1 = ω2 ≡ ω0 ≫ Γ, and Γ′

1 = Γ′
2 ≡ Γ′.

Single-photon phase gate.— Assuming an incident
photon from the left (with wave vector k), we obtain the
single photon scattering eigenstate [38]; the transmission
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coefficient is given by

tk ≡
√
Teiθ =

(ck − ω0 +
iΓ′

2
)2

(ck − ω0 +
iΓ+iΓ′

2
)2 + Γ2

4
e2ikL

. (2)

As shown in Fig. 1(b), there is a large window of per-
fect transmission: T ≈ 1, even when the detuning (δ =
ck−ω0) of the single photon is within the resonance line
width (∼ Γ). This is in sharp contrast to the single-
qubit case, where perfect transmission is only possible
for far off-resonance photons [3]. Such perfect transmis-
sion occurs when the reflections from the two qubits in-
terfere destructively and cancel each other completely.
Furthermore, Fig. 1(c) shows that within the resonance
line width, there is a considerable phase shift θ. This
feature of single-photon transmission can be used to im-
plement a photon-atom phase gate. For example, in the
case of δ = −0.5Γ and kL = π/4, the single photon
passes through the system with unit probability and a
π/2 phase shift. Two successive passes will give rise to a
photon-atom π-phase gate, which can be further used to
realize a photon-photon phase gate [39].
Photon-photon correlation: Nonlinear effects.—To

study the interaction effects, we develop a novel Green
function method to calculate the full interacting scatter-
ing eigenstates and so photon-photon correlations. We
start with a reformulated Hamiltonian [6]

H = H0 + V, V =
∑

j=1,2

U

2
d†jdj(d

†
jdj − 1),

H0 =
∑

j=1,2

~(ωj − iΓ′
j/2)d

†
jdj +Hwg

+
∑

j=1,2

∑

α=R,L

∫

dx~Vjδ(x− aj)[a
†
α(x)dj + h.c.], (3)

where d†j and dj are bosonic creation and annihilation op-
erators on the qubit sites. The qubit ground and excited
states correspond to zero- and one-boson states, respec-
tively. Unphysical multiple occupation is removed by in-
cluding a large repulsive on-site interaction term U ; the
Hamiltonians in Eqs. (1) and (3) become equivalent in the
limit U → ∞. The non-interacting scattering eigenstates
can be obtained easily from H0|φ〉 = E|φ〉. The full in-
teracting scattering eigenstates |ψ〉 are connected to |φ〉
through the Lippmann-Schwinger equation [11, 40, 41]

|ψ〉 = |φ〉+GR(E)V |ψ〉, GR(E) =
1

E −H0 + i0+
. (4)

The key step is to numerically evaluate the Green func-
tions, from which one obtains the scattering eigenstates
[38]. Assuming a weak continuous wave incident laser,
we calculate the second-order correlation function g2(t)
[42] for an arbitrary interqubit separation.
Figure 2 shows g2(t) for both the transmitted and re-

flected fields when the probe laser is on resonance with

the qubit: k = k0 (k0 ≡ ω0/c). When the two qubits
are colocated [9] (L = 0), g2(t) of the transmitted field
shows strong initial bunching followed by antibunching,
while g2(t) of the reflected field shows perfect antibunch-
ing at t= 0, g2(0) = 0. This behavior is similar to that
in the single qubit case [3, 8]. When the two qubits are
spatially separated by L = π/2k0, we observe quantum
beats (oscillations). Since these beats occur in g2(t), they
necessarily involve the nonlinearity of the qubits and do
not occur for, e.g., waveguide-coupled oscillators.
As one increases the separationL, one may expect from

the well-known 3D result that the quantum beats disap-
pear [43]. However, in our 1D system they do not: Figure
3 shows g2(t) for two cases, k0L = 25.5π and 100.5π, from
which it is clear that the beats persist to long time. The
1D nature is key in producing strong quantum interfer-
ence effects and so long-range qubit-qubit interactions.
Non-Markovian regime.—To interpret these exact nu-

merical results, we compare them with the solution under
the well-knownMarkov approximation. For small separa-
tions (k0L ≤ π), the system is Markovian [43]: the causal
propagation time of photons between the two qubits can
be neglected and so the qubits interact instantaneously.
To understand quantum beats in this limit, we use a mas-
ter equation for the density matrix ρ of the qubits in the
Markov approximation. Integrating out the 1D bosonic
degrees of freedom yields [34]

∂ρ

∂t
=
i

~
[ρ,Hc]−

∑

i,j=1,2

Γij

2
(ρσ+

i σ
−
j + σ+

i σ
−
j ρ− 2σ−

i ρσ
+

j ),

Hc = ~ω0

∑

i=1,2

σ+

i σ
−
i + ~Ω12(σ

+
1 σ

−
2 + σ+

2 σ
−
1 ), (5)

where Γii ≡ Γ + Γ′ while Γ12 ≡ Γcos(ω0L/c) and Ω12 ≡
(Γ/2)sin(ω0L/c) are the vacuum-mediated spontaneous
and coherent couplings, respectively. Transforming to
symmetric and antisymmetric states |S,A〉 = (|g1e2〉 ±
|e1g2〉)/

√
2 gives a more transparent form:

∂ρ

∂t
=
i

~
[ρ,Hc]−

∑

β=S,A

Γβ

2
(ρσ+

β σ
−
β + σ+

β σ
−
β ρ− 2σ−

β ρσ
+

β ),

Hc =
∑

β=S,A

~ωβσ
+

β σ
−
β , (6)

where σ+

S,A ≡ (σ+

1 ± σ+

2 )/
√
2, ΓS,A ≡ Γ + Γ′ ± Γ12,

and ωS,A ≡ ω0 ± Ω12. Note that |S〉 and |A〉 are de-
coupled from each other and have transition frequencies
ωS,A and decay rates ΓS,A which oscillate as a function
of L. When L = 0, ΓS = 2Γ + Γ′ and ΓA = Γ′. |S〉 is
in the superradiant state, while |A〉 is subradiant. The
waveguide couples only to the superradiant state and so
the photon-photon correlation mimics that for a single-
qubit. However, when k0L = π/2, ΓS = ΓA = Γ + Γ′,
ωS,A = ω0 ± Γ/2, and the waveguide couples to both |S〉
and |A〉. The quantum interference between the transi-
tions |S〉 → |g1g2〉 and |A〉 → |g1g2〉 gives rise to quantum
beats at frequency ωS − ωA = Γ, as shown in Fig. 2.
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FIG. 2. Quantum beats in the Markovian regime. The se-
cond-order photon-photon correlation function of both the
transmitted (top) and reflected (bottom) fields as a function
of t for k0L = 0 (solid line) and k0L = π/2 (dashed line). The
incident weak coherent state is on resonance with the qubits:
k = k0 = ω0/c. (Parameters: ω0 = 100Γ and Γ′ = 0.1Γ.)

As one increases the separation L and goes beyond the
Markovian regime, Eq. (5) is not a valid description of the
system because the causal propagation time of photons
(or retardation effect) has to be included. Comparing the
results in Figs. 2 and 3, we see that quantum beats are
more visible in the non-Markovian regime in both the
transmitted and reflected fields and persist to a much
longer time scale, especially for the case k0L = 100.5π.
To better understand the persistent quantum beats, we

extract the transition frequencies and decay rates of the
two qubit system beyond the Markovian regime. This
is achieved by analyzing the poles of the Green function
[38] defined in Eq. (4); they are given by

F (ω) =
[

ω − ω0 +
i(Γ + Γ′)

2

]2

+
Γ2

4
e2iωL/c = 0 . (7)

In the Markovian regime, one can safely replace ω by
ω0 in the exponent, given that ω0 ≫ Γ and L ≪ cΓ−1.
Eq. (7) then yields ω± = ω0 − i(Γ + Γ′)/2± iΓeiω0L/c/2.
The real and imaginary parts of ω± correspond to the
transition frequencies and decay rates, which are noth-
ing but ωS,A and −ΓS,A/2 obtained using the Markov
approximation [Eq. (6)]. Beyond this Markovian regime,
we solve Eq. (7) iteratively by gradually increasing L.
Figure 4 shows that both ωS,A and ΓS,A deviate sig-

nificantly from their Markovian values as k0L becomes
large [Figs. 4(c) and 4(d)]. The expanded detail plots,
Figs. 4(a) and 4(e), show that the Markov approximation
works well for k0L ∈ [0, 5π]. At large k0L, however, both
the symmetric and antisymmetric states become subra-
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FIG. 3. Persistent quantum beats in the non-Markovian
regime. The second-order correlation function of both the
transmitted (top) and reflected (bottom) fields is plotted as a
function of t for k0L = 25.5π (solid line) and 100.5π (dashed
line). We set the incident coherent state on resonance with
the qubits (k = k0), ω0 = 100Γ and Γ′ = 0.1Γ.

diant [ΓS,A ≪ Γ, Fig. 4(f)]. This suppression of decay
comes about in the following way: after the initial exci-
tation of and emission from the first qubit, it can be reex-
cited by the pulse reflected from the second qubit. From
the excitation probability of the first qubit over many
emission-reexcitation cycles, an effective qubit life time
can be defined: it is greatly lengthened by the causal
propagation of photons between the two qubits. ΓS,A

characterize the average long time decay quantitatively.

The nonlinear equation Eq. (7) gives rise, of course,
to infinitely many poles for L > 0. These poles repre-
sent collective states of two spatially separated qubits
with vacuum-mediated interactions. They are eigen-
modes of the density matrix of the two qubits. The
“two-pole” approximation of retaining only the symmet-
ric and antisymmetric states is a good approximation be-
cause (ωS,A − ω0,ΓS,A) are the two poles closest to the
origin (0, 0). Within the parameter range we consider,
all other collective states are far detuned from ω0 and
hence barely populated [38]. In addition, |S〉 and |A〉
have much smaller decay rates than all the other collec-
tive states. Therefore, these two slowly decaying states
dominate the long-time dynamics and quantum interfer-
ence between their spontaneous emissions is the physical
origin of the persistent quantum beats observed in Fig. 3.
.

Qubit-qubit entanglement.—With the “two-pole” ap-
proximation, we study qubit-qubit entanglement using
the master equation Eq. (6) with ωS,A and ΓS,A replaced
by the renormalized values obtained from Eq. (7). We
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FIG. 4. Renormalized transition frequencies and decay rates
of the symmetric (S) and antisymmetric (A) states. Panels
(a)-(c) show the transition frequencies ωS (thin solid line)
and ωA (thick solid line) obtained numerically from Eq. (7)
together with ωS (thin dashed line) and ωA (thick dashed line)
given by the Markov approximation. Panels (d)-(f) similarly
show the decay rates ΓS and ΓA obtained both numerically
and in the Markov approximation. (ω0=100Γ and Γ′=0.1Γ.)

focus on the steady state case by including a continu-
ous weak driving laser on resonance with the first qubit:
HL = ~Ω1(σ

+

1 + σ−
1 ) [27, 28]. The entanglement is char-

acterized by the concurrence [44]; Figure 5 shows its
steady state value for the Rabi frequency Ω1 = 0.1Γ.
For small separation [Fig. 5(a)], the concurrence agrees
with that obtained using the Markov approximation [27]:
C reaches its maximum when the maximally-entangled
two-qubit subradiant state (either |S〉 or |A〉) has a min-
imal decay rate and is well populated [28]. Between two
peaks, C vanishes because the symmetric and antisym-
metric states are now barely populated and the usual
decay rate, Γ + Γ′ ≫ Ω1, holds [45].

In contrast, Fig. 5(b) shows that the Markovian predic-
tions break down: we observe enhanced entanglement for
an arbitrary interqubit separation. Such enhancement is
due to non-Markovian processes: both |S〉 and |A〉 be-
come subradiant (Fig. 4) with decay rates much smaller
than Γ and hence are well populated [38]. Thus, long-
range entanglement is possible due to non-Markovian
processes, making 1D waveguide-QED systems promis-
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FIG. 5. Long-distance qubit-qubit entanglement. The steady
state concurrence is plotted as a function of k0L for (a) 0 ≤

k0L ≤ 5π, and (b) 95π ≤ k0L ≤ 100π. The Rabi frequencies
are Ω1 = 0.1Γ, Ω2 = 0. The driving laser is on resonance with
the qubits. (ω0 = 100Γ and Γ′ = 0.1Γ.)

ing candidates for scalable quantum networking.

Discussion of Loss.—Accessing the non-Markovian
regime requires a large (effective) distance between the
qubits and hence low loss in the waveguide. Here, we
have included the loss of the qubit by using an effective
Purcell factor of 10 (i.e. ∼10% loss). Because waveguide
loss has the same effect on system performance as qubit
loss (both lead to photon leakage), we expect that the ob-
served persistent quantum beats and long-distance entan-
glement are robust against waveguide loss on this same
level, namely ∼ 10%. While some waveguides in current
experimental systems are very lossy (such as plasmonic
nanowires [15]), we can circumvent this difficulty by us-
ing a hybrid nanofiber system as discussed in the Sup-
plementary Material [38]. One example is an integrated
fiber-plasmonic system [3]: the optical fiber is coupled
to two tapered plasmonic nanowires which interact with
local qubits (e.g. quantum dots). Another example is an
integrated nanofiber-trapped atomic ensemble [46, 47]:
an optical fiber is tapered into a nanofiber in two regions
where atomic ensembles are trapped by the evanescent
field surrounding the nanofibers. In both of these exam-
ples, the long waveguide connecting the two qubits is a
high quality optical fiber in which the loss is very small
over a length of order 100 wavelengths.
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